已知f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)判断方程f(x)=12x+b的零点的个数.

已知f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)判断方程f(x)=12x+b的零点的个数.

题型:解答题难度:一般来源:不详
已知f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)判断方程f(x)=
1
2
x+b的零点的个数.
答案
(1)∵f(x)=log4(4x+1)+kx(k∈R)是偶函数.
∴f(-x)=f(x)
即log4(4-x+1)-kx=log4(4x+1)+kx
即log4(4x+1)-(k+1)x=log4(4x+1)+kx
即2k+1=0
∴k=-
1
2

证明:(2)由(1)得f(x)=log4(4x+1)-
1
2
x
令y=log4(4x+1)-x
由于y=log4(4x+1)-x为减函数,且恒为正
故当b>0时,y=log4(4x+1)-x-b有唯一的零点,此时函数y=f(x)的图象与直线 y=
1
2
x+b
有一个交点,
当b≤0时,y=log4(4x+1)-x-b没有零点,此时函数y=f(x)的图象与直线 y=
1
2
x+b
没有交点
举一反三
已知y=f(x-1)是偶函数,则函数f(x)图象的对称轴是(  )
A.x=1B.x=-1C.x=0.5D.x=-0.5
题型:单选题难度:一般| 查看答案
已知函数f(x)=x-2a


x
在(0,1)上为减函数.
(1)讨论f(x)的单调性(指出单调区间);
(2)当a>0时,如果f(x)在(0,1)上为减函数,g(x)=x2-2alnx在(1,2)上是增函数,求实数a的值;
(3)当a=2时,若g(x)≥2bx-
1
x2
在x∈(0,1]
内恒成立,求b的取值范围.
题型:解答题难度:一般| 查看答案
设实数a≥1,使得不等式x|x-a|+
3
2
≥a
,对任意的实数x∈[1,2]恒成立,则满足条件的实数a的范围是______.
题型:填空题难度:一般| 查看答案
设0<a<1,函数f(x)=loga
x+1
x-1

(1)求函数f(x)定义域;
(2)判断f(x)的奇偶性,并证明;
(3)当f(x)>0时,求x的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=2x(x∈R),且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数.若不等式2a•g(x)+h(2x)≥0对任意x∈[1,2]恒成立,则实数a的取值范围是______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.