设f(x)是定义在集合D上的函数,若对集合D中的任意两数x1,x2恒有f(14x1+34x2)<14f(x1)+34f(x2)成立,则f(x)是定义在D上的β函

设f(x)是定义在集合D上的函数,若对集合D中的任意两数x1,x2恒有f(14x1+34x2)<14f(x1)+34f(x2)成立,则f(x)是定义在D上的β函

题型:解答题难度:一般来源:不详
设f(x)是定义在集合D上的函数,若对集合D中的任意两数x1,x2恒有f(
1
4
x1+
3
4
x2)<
1
4
f(x1)+
3
4
f(x2)
成立,则f(x)是定义在D上的β函数.
(1)试判断f(x)=x2是否是其定义域上的β函数?
(2)设f(x)是定义在R上的奇函数,求证:f(x)不是定义在R上的β函数.
(3)设f(x)是定义在集合D上的函数,若对任意实数α∈[0,1]以及集合D中的任意两数x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)是定义在D上的α-β函数.已知f(x)是定义在R上的α-β函数,m是给定的正整数,设an=f(n),n=1,2,3…m且a0=0,am=2m,记∫=a1+a2+a3+…+am,对任意满足条件的函数f(x),求∫的最大值.
答案
(1)∵f(
1
4
x1+
3
4
x2)-[
1
4
f(x1)+
3
4
f(x2)]
=(
1
4
x1+
3
4
x2)2-(
1
4
x12+
3
4
x22)
=-
3
16
x12-
7
16
x22+
3
8
x1x2

=-
3
16
(x1-x2)2-
5
8
x22
<0
∴对定义域中的任意两数x1,x2恒有f(
1
4
x1+
3
4
x2)<
1
4
f(x1)+
3
4
f(x2)
成立,
∴f(x)=x2是其定义域上的β函数;
(2)证明:∵f(x)是定义在R上的奇函数,
∴f(0)=0
∴x1=x2=0时,f(
1
4
×0+
3
4
×0)=
1
4
f(0)+
3
4
f(0)

∴f(x)不是定义在R上的β函数.
(3)(Ⅱ) 对任意0≤n≤m,取x1=m,x2=0,α=
n
m
∈[0,1],
∵f(x)是R上的α-β函数,an=f(n),且a0=0,am=2m,
∴an=f(n)=f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2)=
n
m
×2m=2n;
那么∫=a1+a2+…+am≤2×(1+2+…+m)=m2+m.
可知f(x)=2x是α-β函数,且使得an=2n(n=0,1,2,…,m)都成立,此时∫=m2+m.
综上所述,∫的最大值为m2+m.
举一反三
已知定义域为R的函数f(x)=
b•2x+1
2x+1+a
是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)解关于t不等式f(k•t2-t)+f(1-k•t)<0.
题型:解答题难度:一般| 查看答案
若函数f(x)在定义域D内某区间I上是增函数,且
f(x)
x
在I上是减函数,则称y=f(x)在I 上是“弱增函数”.已知函数h(x)=x2-(b-1)x+b在(0,1]上是“弱增函数”,则实数b的值为______.
题型:填空题难度:简单| 查看答案
若函数f(x)=lg
4x+a
2x
为偶函数,则实数a=______.
题型:填空题难度:一般| 查看答案
试问函数f(x)=x+sinx是否为周期函数?请证明你的结论.
题型:解答题难度:一般| 查看答案
f(x)=log3
1-2sinx
1+2sinx

(1)求函数y=f(x)的定义域和值域.
(2)判断函数y=f(x)的奇偶性.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.