已知函数f(x)=lnex-e-x2,则f(x)是(  )A.非奇非偶函数,且在(0,+∝)上单调递增B.奇函数,且在R上单调递增C.非奇非偶函数,且在(0,+

已知函数f(x)=lnex-e-x2,则f(x)是(  )A.非奇非偶函数,且在(0,+∝)上单调递增B.奇函数,且在R上单调递增C.非奇非偶函数,且在(0,+

题型:单选题难度:简单来源:不详
已知函数f(x)=ln
ex-e-x
2
,则f(x)是(  )
A.非奇非偶函数,且在(0,+∝)上单调递增
B.奇函数,且在R上单调递增
C.非奇非偶函数,且在(0,+∝)上单调递减
D.偶函数,且在R上单调递减
答案
函数f(x)=ln
ex-e-x
2
的定义域为
ex-e-x
2
>0

解得x>0,即{x|x>0}不关于原点对称,
因此函数是非奇非偶函数;
根据复合函数的单调性的判定方法,可知:函数f(x)=ln
ex-e-x
2
在(0,+∝)上单调递增.
故选A.
举一反三
已知函数f(x)=lnx,g(x)=
1
2
ax2-(a-1)x,(a∈R).
(Ⅰ)已知函数y=g(x)的零点至少有一个在原点右侧,求实数a的范围.
(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=
x1+x2
2
;②曲线C在点M处的切线平行于直线AB,则称函数f(x)=存在“中值相依切线”.
试问:函数G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切线”,请说明理由.
题型:解答题难度:一般| 查看答案
函数f(x)=


9-x2
x
的图象关于(  )
A.x轴对称B.y轴对称
C.原点对称D.直线x-y=0对称
题型:单选题难度:一般| 查看答案
已知f(x)为偶函数,当x≥0时,f(x)=-(x-1)2+1,满足f[f(a)]=
1
2
的实数a的个数为(  )
A.2B.4C.6D.8
题型:单选题难度:简单| 查看答案
定义在R上的偶函数f(x),当x∈[1,2]时,f(x)<0且f(x)为增函数,给出下列四个结论:①f(x)在[-2,-1]上单调递增;②当x∈[-2,-1]时,有f(x)<0;③f(-x)在[-2,-1]上单调递减;④|f(x)|在[-2,-1]上单调递减.其中正确的结论是(  )
A.①③B.②③C.②④D.③④
题型:单选题难度:一般| 查看答案
已知函数f(x)满足f(x+1)=
1
f(x)
,且f(x)是偶函数,当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.