若函数f(x)=-4sin2x+4cosx+1-a,当x∈[-π3,2π3]时f(x)=0恒有解,则实数a的取值范围是______.

若函数f(x)=-4sin2x+4cosx+1-a,当x∈[-π3,2π3]时f(x)=0恒有解,则实数a的取值范围是______.

题型:填空题难度:一般来源:不详
若函数f(x)=-4sin2x+4cosx+1-a,当x∈[-
π
3
3
]
时f(x)=0恒有解,则实数a的取值范围是______.
答案
∵f(x)=-4sin2x+4cosx+1-a
=-4(1-cos2x)+4cosx+1-a
=4cos2x+4cosx-3-a
=4(cosx+
1
2
)
2
-4-a

又∵f(x)=0恒有解
∴0=4(cosx+
1
2
)
2
-4-a
4(cosx+
1
2
)
2
-4=a
x∈[-
π
3
3
]
恒有解
x∈[-
π
3
3
]
可得cosx∈[-
1
2
,1]

-4≤4(cosx+
1
2
)
2
-4≤5

∴-4≤a≤5
故答案为:[-4,5]
举一反三
下列说法:①第二象限角比第一象限角大;②设θ是第二象限角,则tan
θ
2
>cot
θ
2
;③三角形的内角是第一象限角或第二象限角;④函数y=sin|x|是最小正周期为π的周期函数;⑤在△ABC中,若sinA>sinB,则A>B.其中正确的是______.(写出所有正确说法的序号)
题型:填空题难度:简单| 查看答案
已知f(x)为R上的奇函数,当x∈[0,+∞)时,f(x)=x(1+x3),则当x∈(-∞,0]时,f(x)=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=______.
题型:填空题难度:一般| 查看答案
下列说法不正确的是(  )
A.图象关于原点成中心对称的函数是奇函数
B.图象关于y轴成轴对称的函数是偶函数
C.奇函数的图象一定过原点
D.对定义在R上的奇函数f(x),一定有f(0)=0
题型:单选题难度:简单| 查看答案
已知函数f(x)=2sin2(
π
4
+ωx)-


3
cos2ωx-1(ω>0)
的最小正周期为
3

(Ⅰ)求ω的值;
(Ⅱ)若不等式|f(x)-m|<2在x∈[
π
6
π
2
]
上恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.