已知函数f(x)=x2+ax+b-2ln(x+1)在x=0处取到极小值1.(Ⅰ)求实数a、b的值及函数f(x)的单调区间;(Ⅱ)若当x∈[-12,e-1]时,不

已知函数f(x)=x2+ax+b-2ln(x+1)在x=0处取到极小值1.(Ⅰ)求实数a、b的值及函数f(x)的单调区间;(Ⅱ)若当x∈[-12,e-1]时,不

题型:解答题难度:一般来源:不详
已知函数f(x)=x2+ax+b-2ln(x+1)在x=0处取到极小值1.
(Ⅰ)求实数a、b的值及函数f(x)的单调区间;
(Ⅱ)若当x∈[-
1
2
,e-1]
时,不等式f(x)<m恒成立,求实数m的取值范围.
答案
(Ⅰ)x+1>0得 f(x)的定义域为(-1,+∞)f′(x)=2x+a-
2
x+1

∵函数f(x)=x2+ax+b-2ln(x+1)在x=0处取到极小值1.
∴f(0)=1,f"(0)=0∴a=2,b=1…(5分)
∴f(x)=x2+2x+1-2ln(x+1)
f(x)=2(1+x)-
2
1+x
=2[(1+x)-
1
1+x
]>0
x2+2x
1+x
>0
⇒x>0
f(x)=2(1+x)-
2
1+x
=2[(1+x)-
1
1+x
]>0
x2+2x
1+x
<0
⇒-1<x<0,
所以f(x)的单调增区间为(0,+∞);单调减区间(-1,0).         …(10分)
(Ⅱ)当x∈[-
1
2
,e-1]
时,不等式f(x)<m恒成立,求实数m的取值范围.
令f(x)=0⇒(1+x)2=1⇒x=0或x=-2(舍)f(-
1
2
)=
1
4
+2ln2
,f(0)=1,f(e-1)=e2-2>f(-
1
2
)

∴当x∈[-
1
2
,e-1]
时,f(x)max=f(e-1)=e2-2
因此可得:不等式f(x)<m恒成立时,m>e2-2…(15分)
举一反三
设f(x)是定义域为(-∞,0)∪(0,+∞)上的奇函数且在(-∞,0)上为增函数.
(1)若m•n<0,m+n≤0,求证:f(m)+f(n)≤0;
(2)若f(1)=0,解关于x的不等式f(x2-2x-2)>0.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
2x-1
2x+1

(1)判断f(x)的奇偶性,并加以证明;
(2)判断f(x)的单调性,并加以证明;
(3)解不等式f(x)>
7
9
题型:解答题难度:一般| 查看答案
已知函数f(x)在定义域(-∞,1]上是减函数,问是否存在实数k,使不等式f(k-sinx)≥f(k2-sin2x)对一切实数x恒成立?并说明理由.
题型:解答题难度:一般| 查看答案
已知函数y=f(x)是偶函数,y=f(x-2)在[0,2]上是单调减函数,则(  )
A.f(0)<f(-1)<f(2)B.f(-1)<f(0)<f(2)C.f(-1)<f(2)<f(0)D.f(2)<f(-1)<f(0)
题型:单选题难度:简单| 查看答案
若f(x)=asinx+3cosx是偶函数,则实数a=______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.