已知函数f(x)的导函数为f′(x)=2+cosx,x∈(-1,1),且f(0)=0,如果f(1-x)+f(1-x2)<0,则实数x的取值范围为(  )A.(0

已知函数f(x)的导函数为f′(x)=2+cosx,x∈(-1,1),且f(0)=0,如果f(1-x)+f(1-x2)<0,则实数x的取值范围为(  )A.(0

题型:单选题难度:一般来源:南充模拟
已知函数f(x)的导函数为f′(x)=2+cosx,x∈(-1,1),且f(0)=0,如果f(1-x)+f(1-x2)<0,则实数x的取值范围为(  )
A.(0,1)B.(1 , 


2
)
C.(-2 , -


2
)
D.(1,


2
)∪
(-


2
 , -1)
答案
∵f′(x)=2+cosx>0,f(0)=0
∴f(x)在(-1,1)上单调递增
∵f(x)=2x+sinx,从而得f(x)是奇函数;
所以f(1-x)<-f(1-x2)=f(x2-1)即有





1-x<x2-1
-1<1-x<1
-1<x2-1<1
解得1<x<


2

故选B.
举一反三
已知函数f(x)=
1
2
ax2
-(2a+1)x+2lnx(a∈R).
(Ⅰ) 求f(x)的单调区间;
(Ⅱ) 设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.
题型:解答题难度:一般| 查看答案
设y=f(x)是偶函数,对于任意正数x都有f(x+2)=-2f(2-x),已知f(-1)=4,则f(-3)等于(  )
A.2B.-2C.8D.-8
题型:单选题难度:一般| 查看答案
已知函数f(x)=x3+ax2+3bx+c(b≠0),且g(x)=f(x)-2是奇函数.
(Ⅰ)求a,c的值;
(Ⅱ)求函数f(x)的单调区间.
题型:解答题难度:一般| 查看答案
已知函数f(x)是定义域为R的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有______个零点,这几个零点的和等于______.
题型:填空题难度:一般| 查看答案
已知偶函数f(x)不恒为零,对任意x∈R,均有:x•f(x+2)=(x+2)•f(x),那么f[f(5)]的值是______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.