设f(x)=4x2-4(a+1)x+3a+3(a∈R),若f(x)=0有两个均小于2的不同的实数根,则此时关于x的不等式(a+1)x2-ax+a-1<0是否对一

设f(x)=4x2-4(a+1)x+3a+3(a∈R),若f(x)=0有两个均小于2的不同的实数根,则此时关于x的不等式(a+1)x2-ax+a-1<0是否对一

题型:解答题难度:一般来源:不详
设f(x)=4x2-4(a+1)x+3a+3(a∈R),若f(x)=0有两个均小于2的不同的实数根,则此时关于x的不等式(a+1)x2-ax+a-1<0是否对一切实数x都成立?请说明理由.
答案
由题意得





△=16(a+1)2-16(3a+3)>0
a+1
2
<2
f(2)=16-8(a+1)+3a+3>0

得2<a<
11
5
或a<-1;
若(a+1)x2-ax+a-1<0对任意实数x都成立,则有:
①若a+1=0,即a=-1,则不等式化为x+2>0不合题意
②若a+1≠0,则有





a+1<0
a2-4(a+1)(a-1)<0

a<-
2


3
3

综上可知,只有在a<-
2


3
3
时,(a+1)x2-ax+a-1<0才对任意实数x都成立.
∴这时(a+1)x2-ax+a-1<0不对任意实数x都成立
举一反三
函数y=sinx+tanx的奇偶性是(  )
A.奇函数B.偶函数
C.既奇又偶函数D.非奇非偶函数
题型:单选题难度:一般| 查看答案
已知f(x)为偶函数,当x>0时,f(x)=(1-x)x,则x<0时,f(x)=______.
题型:填空题难度:简单| 查看答案
设函数f(x)=lnx,g(x)=x-
1
x

(1)求Φ(x)=g(x)+kf(x)(k<0)的单调区间;
(2)若对所有的x∈[e,+∞),都有xf(x)≥ax+a成立,求a的取值范围.
题型:解答题难度:一般| 查看答案
下列函数中既是奇函数,又在区间[-1,1]上是增函数的是(  )
A.Y=2xB.y=x3+2xC.y=-sinxD.y=-
1
x
题型:单选题难度:简单| 查看答案
设函数f(x)是奇函数且周期为3,f(-1)=-1,则f(2008)=______.
题型:填空题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.