在数列(an)中,an=2n-1,若一个7行12列的矩阵的第i行第j列的元素cij=ai•aj+ai+aj(i=1,2,…,7;j=1,2,…,12),则该矩阵
题型:上海难度:来源:
在数列(an)中,an=2n-1,若一个7行12列的矩阵的第i行第j列的元素cij=ai•aj+ai+aj(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为( ) |
答案
该矩阵的第i行第j列的元素cij=ai•aj+ai+aj=(2i-1)(2j-1)+2i-1+2j-1=2i+j-1(i=1,2,…,7;j=1,2,…,12), 当且仅当:i+j=m+n时,aij=amn(i,m=1,2,…,7;j,n=1,2,…,12), 因此该矩阵元素能取到的不同数值为i+j的所有不同和,其和为2,3,…,19,共18个不同数值. 故选A. |
举一反三
已知整数以按如下规律排成一列:(1,1)、(1,2)、(2,1)、(1,3)、(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第62个数对是( )A.(10,1) | B.(2,10) | C.(5,7) | D.(7,5) |
|
已知函数f(x)=,对于数列{an}有an=f(an-1)(n∈N*,且n≥2),如果a1=1,那么a2=______,an=______. |
已知数列3,7,11,…,139与2,9,16,…,142,则它们所有公共项的个数为( ) |
数列{an}的前n项和为Sn点(n,Sn)在函数f(x)=2x-1的图象上,数列{bn}满足bn=log2an-12(n∈N+) ①求数列{an}的通项公式; ②当数列{bn}的前n项和为Sn最小时,求n. |
最新试题
热门考点