(1)an=3-,bn+1-bn=-15log3=5, ∴{bn}是首项为b1=t+5,公差为5的等差数列. (2)cn=(5n+t) ·3-,则ck=(5k+t)·3-, 令5k+t=x(x>0),则ck=x·3-,ck+1=(x+5)·3-,ck+2=(x+10)·3-. ①若=ck+1ck+2,则2=(x+5)·3-·(x+10)·3-. 化简得2x2-15x-50=0,解得x=10;进而求得k=1,t=5; ②若=ckck+2,同理可得(x+5)2=x(x+10),显然无解; ③若=ckck+1,同理可得(x+10)2=x(x+5),方程无整数根. 综上所述,存在k=1,t=5适合题意. |