已知{an}是递增的等差数列,a1=2,a22=a4+8(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=an+2an,求数列{bn}的前n项和Sn.

已知{an}是递增的等差数列,a1=2,a22=a4+8(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=an+2an,求数列{bn}的前n项和Sn.

题型:温州一模难度:来源:
已知{an}是递增的等差数列,a1=2,a22=a4+8
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+2an,求数列{bn}的前n项和Sn
答案
(Ⅰ)设等差数列的公差为d,d>0,
∵a1=2,a22=a4+8
∴(2+d)2=2+3d+8,
∴d2+d-6=0,
解得d=2或d=-3(舍),…(3分)
∴d=2…(5分)
代入:an=a1+(n-1)d=2+(n-1)×2=2n,
∴数列{an}的通项公式为:an=2n …(7分)
(Ⅱ)∵bn=an+2an=2n+22n …(9分)
∴数列{bn}的前n项和:
Sn=b1+b2+…+bn=(2+22)+(4+24)+…+(2n+22n
=(2+4+…+2n)+(22+24+…+22n))…(11分)
=
(2+2n)n
2
+
4(1-4n)
1-4

=n(n+1)+
4n+1-4
3
   …(14分)
举一反三
在数列{an}中,a1=1,an+1=1-
1
4an
bn=
2
2an-1
,其中n∈N*

(1)求证:数列{bn}是等差数列,并求数列{an}的通项公式an
(2)设cn=n•2n+1•an,求数列{cn}的前n项和.
题型:安徽模拟难度:| 查看答案
若两个等差数列{an},{bn}的前n项和分别Sn,Tn且满足
Sn
Tn
=
3n+2
4n-5
,则
a5
b5
=______.
题型:不详难度:| 查看答案
设等差数列{an}的前n项和为Sn,已知(a4-1)3+2007(a4-1)=1,(a2004-1)3+2007(a2004-1)=-1,则下列结论中正确的是(  )
A.S2007=2007,a2004<a4B.S2007=2007,a2004>a4
C.S2007=2008,a2004≤a4D.S2007=2008,a2004≥a4
题型:不详难度:| 查看答案
已知正数数列{an}的前n项和为Sn,满足Sn2=a13+a23+…+an3
(I)求证:数列{an}为等差数列,并求出通项公式;
(II)设bn=(1-
1
an
2-a(1-
1
an
),若bn+1>bn对任意n∈N*恒成立,求实数a的取值范围.
题型:不详难度:| 查看答案
己知等差数列{an},公差d>0,前n项和为Sn,且满足a2a3=45,a1+a4=14.
(I)求数列{an}的通项公式及前,n项和Sn
(II)设bn=
Sn
n+c
,若数列{bn}也是等差数列,试确定非零常数c;并求数列{
1
bnbn+1
}
的前n项和Tn
题型:金华模拟难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.