己知等差数列{an},公差d>0,前n项和为Sn,且满足a2a3=45,a1+a4=14.(I)求数列{an}的通项公式及前,n项和Sn;(II)设bn=Snn

己知等差数列{an},公差d>0,前n项和为Sn,且满足a2a3=45,a1+a4=14.(I)求数列{an}的通项公式及前,n项和Sn;(II)设bn=Snn

题型:金华模拟难度:来源:
己知等差数列{an},公差d>0,前n项和为Sn,且满足a2a3=45,a1+a4=14.
(I)求数列{an}的通项公式及前,n项和Sn
(II)设bn=
Sn
n+c
,若数列{bn}也是等差数列,试确定非零常数c;并求数列{
1
bnbn+1
}
的前n项和Tn
答案
(Ⅰ)由等差数列{an}的性质可得a2+a3=a1+a4=14,又a2a3=45.





a2a3=45
a2+a3=14
,解得





a2=5
a3=9





a2=9
a3=5

∵d>0,∴





a2=9
a3=5
应舍去,
因此





a2=5
a3=9

∴d=a3-a2=4,a1=a2-d=5-4=1,
∴an=1+(n-1)×4=4n-3,
Sn=n+
n(n-1)
2
×4
=2n2-n.
(Ⅱ)由(Ⅰ)可得bn=
2n2-n
n+c

∵数列{bn}是等差数列,则2b2=b1+b3,即
6
2+c
=
1
1+c
+
15
3+c

解得c=-
1
2

∴bn=2n.
1
bnbn+1
=
1
2n•2(n+1)
=
1
4
(
1
n
-
1
n+1
)

∴Tn=
1
4
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]

=
1
4
(1-
1
n+1
)

=
n
4(n+1)
举一反三
已知数列{an}中,a1=
3
5
an=2-
1
an-1
(n≥2,n∈N*)
,数列{bn}满足bn=
1
an-1
(n∈N*)

(1)求证:数列{bn}是等差数列;
(2)求数列{an}中的最大项和最小项,并说明理由.
题型:不详难度:| 查看答案
设等差数列{an}的前n项和为Sn,若S3≤3,S4≥4,S5≤10,则a6的最大值是______.
题型:宁波二模难度:| 查看答案
若数列{an}的前n项和为Sn,则下列命题:
(1)若数列{an}是递增数列,则数列{Sn}也是递增数列;
(2)数列{Sn}是递增数列的充要条件是数列{an}的各项均为正数;
(3)若{an}是等差数列(公差d≠0),则S1•S2…Sk=0的充要条件是a1•a2…ak=0.
(4)若{an}是等比数列,则S1•S2…Sk=0(k≥2,k∈N)的充要条件是an+an+1=0.
其中,正确命题的个数是(  )
A.0个B.1个C.2个D.3个
题型:不详难度:| 查看答案
已知等差数列{an}满足a1=8,a5=0,数列{bn}的前n项和为Sn=2n-1-
1
2
(n∈N*)

①求数列{an}和{bn}的通项公式;
②解不等式an<bn
题型:不详难度:| 查看答案
在数列{an}中,a1=0,且对任意k∈N+,a2k-1,a2k,a2k+1成等差数列,其公差为2k.
(Ⅰ)证明a4,s5,a6成等比数列;
(Ⅱ)求数列{an}的通项公式.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.