(Ⅰ)依题意ak(x)=(x)k-1,k=1,2,3,…,n+1, a1(x),a2(x),a3(x)的系数依次为Cn0=1,•=,•()2=, 所以2×=1+, 解得n=8; (Ⅱ)F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x)=+2(x)+3(x)2…+n(x)n-1+(n+1)(x)n F(2)-F(0)=2Cn1+3Cn2…+nCnn-1+(n+1)Cnn 设Sn=Cn0+2Cn1+3Cn2…+nCnn-1+(n+1)Cnn, 则Sn=(n+1)Cnn+nCnn-1…+3Cn2+2Cn1+Cn0 考虑到Cnk=Cnn-k,将以上两式相加得:2Sn=(n+2)(Cn0+Cn1+Cn2…+Cnn-1+Cnn) 所以Sn=(n+2)2n-1 所以F(2)-F(0)=(n+2)2n-1-1 又当x∈[0,2]时,F"(x)≥0恒成立, 从而F(x)是[0,2]上的单调递增函数, 所以对任意x1,x2∈[0,2],|F(x1)-F(x2)|≤F(2)-F(0)═(n+2)2n-1-1<(n+2)2n-1. |