数列{an}满足a1=1,an+1=2n+1anan+2n(n∈N*).(Ⅰ)证明:数列{2nan}是等差数列;(Ⅱ)求数列{an}的通项公式an;(Ⅲ)设bn

数列{an}满足a1=1,an+1=2n+1anan+2n(n∈N*).(Ⅰ)证明:数列{2nan}是等差数列;(Ⅱ)求数列{an}的通项公式an;(Ⅲ)设bn

题型:不详难度:来源:
数列{an}满足a1=1,an+1=
2n+1an
an+2n
(n∈N*).
(Ⅰ)证明:数列{
2n
an
}是等差数列;
(Ⅱ)求数列{an}的通项公式an
(Ⅲ)设bn=
1
n•2n+1
an
,求数列{bn}的前n项和Sn
答案
(Ⅰ)由已知可知
an+1
2n+1
=
an
an+2n
,即
2n+1
an+1
=
2n
an
+1
,即
2n+1
an+1
-
2n
an
=1

∴数列{
2n
an
}是公差为1的等差数列.
(Ⅱ)由(Ⅰ)知
2n
an
=
2
a1
+(n-1)×1=2+(n-1)×1=n+1
,∴an=
2n
n+1

(Ⅲ)由(Ⅱ)知bn=
1
n•2n+1
an=
1
n•2n+1
×
2n
n+1

bn=
1
2n(n+1)
=
1
2
(
1
n
-
1
n+1
)

∴Sn=b1+b2+…+bn=
1
2
(1-
1
2
)+
1
2
(
1
2
-
1
3
)
+…+
1
2
(
1
n
1
n+1
)
=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+
+(
1
n
-
1
n+1
)]
=
n
2(n+1)
举一反三
已知等差数列{an}的前3项依次为a-1,a+1,2a+3,则此数列的通项an为______.
题型:不详难度:| 查看答案
已知数列{a}满足an=2an-1+2n+2(n≥2,a1=2),
(1)求a2,a3,a4
(2)是否存在一个实数λ,使得数列{
an
2n
}成等差数列,若存在,求出λ的值,若不存在,请说明理由;
(3)求数列{an}的前n项和,证明:Sn≥n3+n2
题型:淄博一模难度:| 查看答案
Sn为等差数列{an}的前n项和,S9=-36,S13=-104,等比数列{bn}中,b5=a5,b7=a7,则b6等于(  )
A.4


2
B.±2


2
C.±4


2
D.32
题型:湖北模拟难度:| 查看答案
已知{an}为等差数列,若a1-a5+a15=20,则a3+a19的值为______.
题型:不详难度:| 查看答案
从集合M={不大于10的正自然数}中,选取三个数,使这三个数组成公差d=-3的等差数列,则这样的等差数列一共有(  )
A.2个B.3个C.4个D.5个
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.