将等差数列{an}的所有项依次排列,并如下分组:(a1),(a2,a3),(a4,a5,a6,a7),…,其中第1组有1项,第2组有2项,第3组有4项,…,第n

将等差数列{an}的所有项依次排列,并如下分组:(a1),(a2,a3),(a4,a5,a6,a7),…,其中第1组有1项,第2组有2项,第3组有4项,…,第n

题型:河东区一模难度:来源:
将等差数列{an}的所有项依次排列,并如下分组:(a1),(a2,a3),(a4,a5,a6,a7),…,其中第1组有1项,第2组有2项,第3组有4项,…,第n组有2n-1项,记Tn为第n组中各项的和,已知T3=-48,T4=0,
(I)求数列{an}的通项公式;
(II)求数列{Tn}的通项公式;
(III)设数列{ Tn }的前n项和为Sn,求S8的值.
答案
(I)设{an}的公差为d,
由题意T3=4a7-6d=-48①,
T4=8a7+36d=0②,
解①、②得d=2,a7=-9,
∴an=2n-23;
(II)当n≥2时,在前n-1组中共有项数为:1+2+…+2n-2=2n-1-1,
故第n组中的第一项是{an}中的第2n-1项,且第n组中共有2n-1项,
∴第n组中的2n-1项的和:
Tn=(2n-23)×2n-1+
2n-1(2n-1-1)
2
×2

=3×22n-2-24×2n-1
当n=1时,T1=a1=-21适合上式,
∴Tn=3×22n-2-24×2n-1
(III)∵S8=T1+T2+T3+…+Tn
即数列{an}前8组元素之和,且这8组总共有1+2+22+…+27=28-1=255,
∴S8=255a1+
1
2
×255×254×d

=255×(-21)+
1
2
×255×254×2

=59415.
举一反三
某厂产值第二年比第一年增长p%,第三年比第二年增长q%,又这两年的平均增长率为S%,则S与
p+q
2
的大小关系是(  )
A.S>
p+q
2
B.S=
p+q
2
C.S≤
p+q
2
D.S≥
p+q
2
题型:不详难度:| 查看答案
已知等差数列{an}中,a1+a2+a3=27,a6+a8+a10=63
(1)求数列{an}的通项公式;
(2)令bn=3an,求数列{bn}的前n项的和Sn
题型:不详难度:| 查看答案
位于函数y=3x+
13
4
的图象上的一系列点P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,这一系列点的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.求点Pn的坐标;
题型:东城区二模难度:| 查看答案
设数列{an}的首项a1=1,前n项和Sn满足关系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1
bn-1
)
(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)数列{bn}满足条件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
题型:石景山区一模难度:| 查看答案
已知等差数列{an}的首项a1=2,公差d≠0,且第一项、第三项、第十一项分别是等比数列{bn}的第一项、第二项、第三项.
(I)求数列{an}和{bn}的通项公式;
(II)设数列{cn}对任意的n∈N*均有
c1
b1
+
c2
b2
+…+
cn
bn
=an+1
,求数列{cn}的前n项和.
题型:丰台区二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.