已知数列满足:,其中为的前项和。(1)求数列的通项公式;(2)若,为的前项和,且对任意,不等式恒成立,求整数的最小值。

已知数列满足:,其中为的前项和。(1)求数列的通项公式;(2)若,为的前项和,且对任意,不等式恒成立,求整数的最小值。

题型:不详难度:来源:
已知数列满足:,其中的前项和。
(1)求数列的通项公式;
(2)若的前项和,且对任意,不等式恒成立,求整数的最小值。
答案
(1)时,,由,得
所以,两式相减得:
化简得:,所以
所以为等差数列,通项公式是
(2)由(1)知恒成立,则,由,所以的最小值是1。
解析

举一反三
已知数列,则的值是     
A.B.C.D.

题型:不详难度:| 查看答案
已知,我们把使乘积为整数的数叫做“劣数”,则在区间内的所有劣数的和为
A.B.C.D.

题型:不详难度:| 查看答案
已知数列的相邻两项是关于的方程的两根,且
(1)求证:数列是等比数列;
(2)求数列的前项和
(3)若对任意的都成立,求的取值范围。
题型:不详难度:| 查看答案
请认真阅读下列材料:
“杨辉三角” (1261年)是中国古代重要的数学成就,它比西方的“帕斯卡三角”(1653年)早了300多年(如表1).在“杨辉三角”的基础上德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数),称为莱布尼兹三角形(如表2)
     
请回答下列问题:
(I)记为表1中第n行各个数字之和,求,并归纳出
(II)根据表2前5行的规律依次写出第6行的数.
题型:不详难度:| 查看答案
数列{an}的前n项和为Sn,若a1="1," an+1 =3Sn(n ≥1),则a6=(   )
A.3 ×44B.3 ×44+1
C.44D.44+1

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.