已知正项等比数列{an}(n∈N*),首项a1=3,前n项和为Sn,且S3+a3、S5+a5、S4+a4成等差数列.(1)求数列{an}的通项公式;(2)求数列

已知正项等比数列{an}(n∈N*),首项a1=3,前n项和为Sn,且S3+a3、S5+a5、S4+a4成等差数列.(1)求数列{an}的通项公式;(2)求数列

题型:不详难度:来源:
已知正项等比数列{an}(n∈N*),首项a1=3,前n项和为Sn,且S3+a3、S5+a5、S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{nSn}的前n项和Tn
答案
(1)设正项等比数列{an}(n∈N*),又a1=3,∴an=3qn-1
∵S3+a3、S5+a5、S4+a4成等差数列,
∴2(S5+a5)=(S3+a3)+(S4+a4),
即2(a1+a2+a3+a4+2a5)=(a1+a2+2a3)+(a1+a2+a3+2a4),
化简得4a5=a3
4a1q4=a1q2,化为4q2=1,
解得q=±
1
2

∵{an}(n∈N*)是单调数列,
q=
1
2
an=
6
2n

(2)由(1)知Sn=6(1-
1
2n
)

Tn=6(1-
1
2
)+6(2-
2
22
)+6(3-
3
23
)+…+6(n-
n
2n
)

Tn=3n(n+1)-6(
1
2
+
2
22
+
3
23
+…+
n
2n
)

Rn=
1
2
+
2
22
+
3
23
+…+
n
2n
,则2Rn=1+
2
2
+
3
22
+…+
n
2n-1

两式相减得Rn=1+
1
2
+
1
22
+
1
23
+…+
1
2n-1
-
n
2n
=2-
n+2
2n

Tn=3n(n+1)-6Rn=3n(n+1)-12+
3(n+2)
2n-1
举一反三
已知等差数列{an},公差d>0,前n项和为Sn,S3=6,且满足a3-a1,2a2,a8成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
1
anan+2
,求数列{bn}的前n项和Tn的值.
题型:不详难度:| 查看答案
设项数均为k(k≥2,k∈N*)的数列{an}、{bn}、{cn}前n项的和分别为Sn、Tn、Un.已知:an-bn=2n(1≤n≤k,n∈N*),且集合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k-2,4k}.
(1)已知Un=2n+2n,求数列{cn}的通项公式;
(2)若k=4,求S4和T4的值,并写出两对符合题意的数列{an}、{bn};
(3)对于固定的k,求证:符合条件的数列对({an},{bn})有偶数对.
题型:不详难度:| 查看答案
如图给出了3层的三角形,图中所有点的个数S3=10.按其规律再画下去,可以得到n层的三角形,Sn=______.
题型:不详难度:| 查看答案
在数列{an}中,前n项和为Sn,且Sn=
n(n+1)
2

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
an
2n
,数列{bn}前n项和为Tn,求Tn的取值范围.
题型:不详难度:| 查看答案
已知数列{an}满足:a1=1,an-an-1+2anan-1=0,(n∈N*,n>1)
(Ⅰ)求证数列{
1
an
}
是等差数列并求{an}的通项公式;
(Ⅱ)设bn=anan+1,求证:b1+b2+…+bn
1
2
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.