设函数f(x)=ex-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.

设函数f(x)=ex-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.

题型:不详难度:来源:
设函数f(x)=ex-ax-2.
(1)求f(x)的单调区间;
(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.
答案
(1)f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.
(2)2
解析
(1)f(x)的定义域为(-∞,+∞),f′(x)=ex-a.
若a≤0,则f′(x)>0,所以f(x)在(-∞,+∞)上单调递增.
若a>0,则当x∈(-∞,ln a)时,f′(x)<0;
当x∈(ln a,+∞)时,f′(x)>0.
所以,f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.
(2)由于a=1时,(x-k)f′(x)+x+1=(x-k)(ex-1)+x+1.
故当x>0时,(x-k)f′(x)+x+1>0等价于
k<+x(x>0)             ①
令g(x)=+x,则g′(x)=+1=.
由(1)知,函数h(x)=ex-x-2在(0,+∞)上单调递增,
又h(1)=e-3<0,h(2)=e2-4>0.
所以h(x)在(0,+∞)上存在唯一零点.
故g′(x)在(0,+∞)上存在唯一零点.
设此零点为α,则α∈(1,2).
当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,
所以g(x)在(0,+∞)上的最小值为g(α).
又由g′(α)=0,得eα=α+2, 所以g(α)=α+1∈(2,3).
由于①式等价于k<g(α),
故整数k的最大值为2.
举一反三
已知a≤+ln x对任意x∈[,2]恒成立,则a的最大值为(  )
A.0B.1C.2D.3

题型:不详难度:| 查看答案
设函数
(1)当时,求函数的最小值;
(2)证明:对,都有
题型:不详难度:| 查看答案
已知函数
(1)若,求函数的单调区间;
(2)若,且对于任意不等式恒成立,试确定实数的取值范围;
(3)构造函数,求证:
题型:不详难度:| 查看答案
已知函数,其中是常数.
(1)当时,求曲线在点处的切线方程;
(2)若存在实数,使得关于的方程上有两个不相等的实数根,求的取值范围.
题型:不详难度:| 查看答案
曲线上两点,若曲线上一点处的切线恰好平行于弦,则点的坐标为(  )
A.(1,3)B.(3,3)C.(6,-12)D.(2,4)

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.