已知,函数.(1)求的极值;(2)若在上为单调递增函数,求的取值范围;(3)设,若在(是自然对数的底数)上至少存在一个,使得成立,求的取值范围。

已知,函数.(1)求的极值;(2)若在上为单调递增函数,求的取值范围;(3)设,若在(是自然对数的底数)上至少存在一个,使得成立,求的取值范围。

题型:不详难度:来源:
已知,函数.
(1)求的极值;
(2)若上为单调递增函数,求的取值范围;
(3)设,若在是自然对数的底数)上至少存在一个,使得成立,求的取值范围。
答案
(1) 无极大值(2)(3)
解析

试题分析:(1)由题意,
∴当时,;当时,
所以,上是减函数,在上是增函数,
 无极大值.                                                    …4分
(2)
由于内为单调增函数,所以上恒成立,
上恒成立,故,所以的取值范围是.…………………9分
(3)构造函数
时,由得,,所以在上不存在一个,使得
时,
因为,所以
所以上恒成立,
上单调递增,
所以要在上存在一个,使得,必须且只需
解得,故的取值范围是.                                       …14分
另法:(Ⅲ)当时,
时,由,得
,则
所以上递减,
综上,要在上存在一个,使得,必须且只需
点评:纵观历年高考试题,利用导数讨论函数单调区间是函数考查的主要形式,是高考热点,是解答题中的必考题目,在复习中必须加强研究,进行专题训练,熟练掌握利用导数判断函数单调区间的方法,总结函数单调性应用的题型、解法,并通过加大训练强度提高解题能力.
举一反三
(14分)设函数.
(1)当时,求的极值;
(2)当时,求的单调区间;
(3)若对任意,恒有成立,求的取值范围
题型:不详难度:| 查看答案
(14分) 已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,判断方程实根个数.
(3)若时,不等式恒成立,求实数的取值范围.
题型:不详难度:| 查看答案
(本题满分12分)设函数..
(Ⅰ)时,求的单调区间;
(Ⅱ)当时,设的最小值为,若恒成立,求实数t的取值范围.
题型:不详难度:| 查看答案
(本小题满分12分)已知函数f(x)=x3-ax2-3x.
(1)若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最小值和最大值.
题型:不详难度:| 查看答案
(本小题满分12分)已知函数,其中.
(I)求函数的导函数的最小值;
(II)当时,求函数的单调区间及极值;
(III)若对任意的,函数满足,求实数的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.