定义:对于区间I内可导的函数y=f(x),若∃x0∈I,使f(x0)=f′(x0)=0,则称x0为函数y=f(x)的新驻点.已知函数f(x)=ax-x.(Ⅰ)若

定义:对于区间I内可导的函数y=f(x),若∃x0∈I,使f(x0)=f′(x0)=0,则称x0为函数y=f(x)的新驻点.已知函数f(x)=ax-x.(Ⅰ)若

题型:不详难度:来源:
定义:对于区间I内可导的函数y=f(x),若∃x0∈I,使f(x0)=f′(x0)=0,则称x0为函数y=f(x)的新驻点.已知函数f(x)=ax-x.
(Ⅰ)若函数y=f(x)存在新驻点,求新驻点x0,并求此时a的值;
(Ⅱ)若f(x)≥0恒成立,求实数a的取值范围.
答案
(Ⅰ)∵f(x)=ax-x,∴f"(x)=axlna-1,由题意得f(x0)=ax0-x0=0f′(x0)=ax0lna-1=0
由①得ax0=x0代入②得x0=logae,即ax0=e
代入①得x0=e,∴ae=e,∴a=e
1
e

(Ⅱ)f(x)=ax-x≥0⇔ax≥x,
(i)x≤0时,显然恒成立,
(ii)x>0时,ax≥x⇔lnax≥lnx⇔xlna≥lnx⇔lna≥
lnx
x

g(x)=
lnx
x
,则g′(x)=
1-lnx
x2
,g"(e)=0,
当x∈(0,e)时,g"(x)>0,g(x)递增,
当x∈(e,+∞)时,g"(x)<0,g(x)递减,g(x)max=g(e)=
1
e
,∴lna≥
1
e
,∴a≥e
1
e
举一反三
已知函数f(x)=alnx-ax-3(a∈R).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[
m
2
+f′(x)]
在区间(t,3)上总存在极值?
(Ⅲ)当a=2时,设函数h(x)=(p-2)x-
p+2e
x
-3
,若在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围.
题型:赣州模拟难度:| 查看答案
函数y=x3-ax+4在(1,+∞)上为增函数,则a的取值范围是______.
题型:不详难度:| 查看答案
已知函数f(x)=ax3+bx在x=3时取得极值-54
(Ⅰ)求a,b的值
(Ⅱ)求曲线y=f(x)与x轴围成图形的面积.
题型:不详难度:| 查看答案
函数f(x)=x3-3x2+4的单调递减区间为(  )
A.(-∞,0)B.(-2,0)C.(0,2)D.(2,+∞)
题型:不详难度:| 查看答案
已知函数f(x)=x3-ax2+1在区间[0,2]内单调递减,则实数a的取值范围是______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.