函数f(x)=lnx+1ax-1a(a为常数,a>0).(1)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;(2)求函数f(x)在区间[1,2]上

函数f(x)=lnx+1ax-1a(a为常数,a>0).(1)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;(2)求函数f(x)在区间[1,2]上

题型:不详难度:来源:
函数f(x)=lnx+
1
ax
-
1
a
(a为常数,a>0).
(1)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值.
答案
(1)∵f(x)=lnx+
1
ax
-
1
a
(a为常数,a>0).
∴f′(x)=
ax-1
ax2
 (x>0).
由已知得f′(x)≥0在[1,+∞)上恒成立,
即a≥
1
x
在[1,+∞)上恒成立,
又∵当x∈[1,+∞)时,
1
x
≤1,
∴a≥1,即a的取值范围为[1,+∞).
(2)当a≥1时,∵f′(x)>0在(1,2)上恒成立,f(x)在[1,2]上为增函数,
∴f(x)min=f(1)=0,
当0<a≤
1
2
时,∵f′(x)<0在(1,2)上恒成立,这时f(x)在[1,2]上为减函数,
∴f(x)min=f(2)=ln2-
1
2a

1
2
<a<1时,∵x∈[1,
1
a
)时,f′(x)<0;
x∈(
1
a
,2]时,f′(x)>0,
∴f(x)min=-lna+1-
1
a

综上,f(x)在[1,2]上的最小值为 ①当0<a≤
1
2
时,f(x)min=ln2-
1
2a
;②当
1
2
<a<1时,f(x)min=-lna+1-
1
a
.③当a≥1时,f(x)min=0.
举一反三
函数y=xcosx-sinx,x∈(0,2π)单调增区间是______.
题型:不详难度:| 查看答案
函数y=
1
x
+2lnx
的单调减区间为______.
题型:不详难度:| 查看答案
已知函数f(x)=lnx-
1
2
ax2(a∈R,a≠0)

(I)求函数f(x)的单调区间;
(II)已知点A(1,-
1
2
a),设B(x1y1)(x1>1)是曲线C:y=f(x)
图角上的点,曲线C上是否存在点M(x0,y0)满足:①x0=
1+x1
2
;②曲线C在点M处的切线平行于直线AB?请说明理由.
题型:不详难度:| 查看答案
已知函数f(x)=lnx+
1-x
ax
,其中a为大于零的常数.
(1)当a=1时,求函数f(x)单调区间.
(2)求函数f(x)在区间[1,2]上的最小值.
题型:不详难度:| 查看答案
设函数f(x)=alnx+
2
a
x
(a≠0)

(1)已知曲线y=f(x)在点(1,f(1))处的切线l的斜率为2-3a,求实数a的值;
(2)讨论函数f(x)的单调性;
(3)在(1)的条件下,求证:对于定义域内的任意一个x,都有f(x)≥3-x.
题型:朝阳区二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.