已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.(1)求实数a的值;(2)若关于x的方程f(x)=-52x+b在区间[0,2]上恰有两个不同的实数

已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.(1)求实数a的值;(2)若关于x的方程f(x)=-52x+b在区间[0,2]上恰有两个不同的实数

题型:泉州模拟难度:来源:
已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.
(1)求实数a的值;
(2)若关于x的方程f(x)=-
5
2
x+b
在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(3)证明:对任意的正整数n,不等式ln
n+1
n
n+1
n2
都成立.
答案
解(1)f′(x)=
1
x+a
-2x-1
,∵x=0时,f(x)取得极值,
∴f"(0)=0,
1
0+a
-2×0-1=0
,解得a=1.经检验a=1符合题意.
(2)由a=1知f(x)=ln(x+1)-x2-x,由f(x)=-
5
2
x+b
,得ln(x+1)-x2+
3
2
x-b=0

φ(x)=ln(x+1)-x2+
3
2
x-b

f(x)=-
5
2
x+b
在[0,2]上恰有两个不同的实数根,
等价于φ(x)=0在[0,2]上恰有两个不同实数根.φ′(x)=
1
x+1
-2x+
3
2
=
-(4x+5)(x-1)
2(x+1)

当x∈(0,1)时,φ"(x)>0,于是φ(x)在[0,1]上单调递增;
当x∈(1,2)时,φ"(x)<0,于是φ(x)在[1,2]上单调递减;
依题意有





φ(0)=-b≤0
,∴ln3-1≤b<ln2+
1
2
.

(3)f(x)=ln(x+1)-x2-x的定义域为{x|x>-1}.
由(1)知f′(x)=
-x(2x+3)
x+1
.令f′(x)=0
时,x=0或x=-
3
2
(舍去),
∴当-1<x<0时,f"(x)>0,f(x)单调递增;
当x>0时,f"(x)<0,f(x)单调递减.
∴f(0)为f(x)在(-1,+∞)上的最大值.
∴f(x)≤f(0),
故ln(x+1)-x2-x≤0(当且仅当x=0时,等号成立).
对任意正整数n,取x=
1
n
>0
得,ln(
1
n
+1)<
1
n
+
1
n2
,故ln
n+1
n
n+1
n2
举一反三
曲线y=


3x-2
在点(1,f(1))处的切线方程为(  )
A.x-2y+1=0B.3x-y-2=0C.3x-2y-1=0D.3x+2y-5=0
题型:不详难度:| 查看答案
已知函数f(x)=
kx+b
x2+c
(c>0且c≠1,k>0)恰有一个极大值点和一个极小值点,且其中一个极值点是x=-c
(1)求函数f(x)的另一个极值点;
(2)设函数f(x)的极大值为M,极小值为m,若M-m≥1对b∈[1,
3
2
]
恒成立,求k的取值范围.
题型:不详难度:| 查看答案
设函数f(x)=x2-alnx与g(x)=
1
a
x-


x
的图象分别交直线x=1于点A,B,且曲线y=f(x)在点A处的切
线与曲线y=g(x)在点B处的切线平行.
(1)求函数f(x),g(x)的表达式;        
(2)当a>1时,求函数h(x)=f(x)-g(x)的最小值;
(3)当a=
1
2
时,不等式f(x)≥m.g(x)在x∈[
1
4
1
2
]上恒成立,求实数m的取值范围.
题型:徐州模拟难度:| 查看答案
已知对任意的实数m,直线x+y+m=0都不与曲线f(x)=x3-3ax(a∈R)相切.
(I)求实数a的取值范围;
(II)当x∈[-1,1]时,函数y=f(x)的图象上是否存在一点P,使得点P到x轴的距离不小于
1
4
.试证明你的结论.
题型:福州模拟难度:| 查看答案
已知函数f(x)=
alnx
x+1
+
b
x
,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.
(Ⅰ)求a、b的值;
(Ⅱ)如果当x>0,且x≠1时,f(x)>
lnx
x-1
+
k
x
,求k的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.