已知函数f(x)=ex-x2,g(x)=alnx+b(a>0),若对任意x1∈[1,2],存在x2∈[1,2],使得f(x1)=g(x2),则实数a,b的取值范

已知函数f(x)=ex-x2,g(x)=alnx+b(a>0),若对任意x1∈[1,2],存在x2∈[1,2],使得f(x1)=g(x2),则实数a,b的取值范

题型:不详难度:来源:
已知函数f(x)=ex-x2,g(x)=alnx+b(a>0),若对任意x1∈[1,2],存在x2∈[1,2],使得f(x1)=g(x2),则实数a,b的取值范围是(  )
A.0<a≤
e2-e-3
ln2
,b≥e-1
B.0<a≤
e2-e-3
ln2
,b≤e-1
C.a≥
e2-e-3
ln2
,b≥e-1
D.a≥
e2-e-3
ln2
,b≤e-1
答案
因为当x∈[1,2]时,f′(x)=ex-2x>0,所以f(x)在[1,2]上递增,
所以x∈[1,2]时,f(1)≤f(x)≤f(2),即e-1≤f(x)≤e2-4,
由a>0得g(x)=alnx+b在[1,2]上递增,
所以x∈[1,2]时,g(1)≤g(x)≤g(2),即b≤g(x)≤aln2+b,
又对任意x1∈[1,2],存在x2∈[1,2],使得f(x1)=g(x2),
所以有[e-1,e2-4]⊆[b,aln2+b],则





b≤e-1
aln2+b≥e2-4

故e2-4-aln2≤b≤e-1,得到,a≥
e2-e-3
ln2
,b≤e-1
故答案为 D
举一反三
已知函数f(x)=lnx-
1
4
x+
3
4x
,g(x)=x2-2bx+4.若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b取值范围是______.
题型:不详难度:| 查看答案
函数f(x)=ex-2x在区间[1,e]上的最大值为______.
题型:不详难度:| 查看答案
已知函数f(x)=ex-mx
(1)当m=1时,求函数f(x)的最小值;
(2)若函数g(x)=f(x)-lnx+x2存在两个零点,求m的取值范围;
(3)证明:(
1
n
)n+(
2
n
)n+(
3
n
)n+…+(
n
n
)n
e
e-1
题型:不详难度:| 查看答案
设定义在区间[-1,1]上的偶函数f(x)与函数g(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=
a
3
(x-2)-4(x-2)3
 (0<a<36),求f(x)的最大值与最小值.
题型:不详难度:| 查看答案
已知函数f(x)=x3-3x,求函数f(x)在[-3,
3
2
]
上的最大值和最小值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.