某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面

某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面

题型:湖南省高考真题难度:来源:
某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元,
(Ⅰ)试写出y关于x的函数关系式;
(Ⅱ)当m=640米时,需新建多少个桥墩才能使y最小?
答案
解:(Ⅰ)设需要新建n个桥墩,
所以

(Ⅱ)由(Ⅰ)知,
令f′(x)=0,得,所以x=64,
当0<x<64时,f′(x)<0,f(x)在区间(0,64)内为减函数;
当64<x<640时,f′(x)>0,f(x)在区间(64,640)内为增函数,
所以f(x)在x=64处取得最小值,
此时,
故需新建9个桥墩才能使y最小。
举一反三
设函数f(x)=x(x-1)+m,g(x)=lnx,
(Ⅰ)当m≥0时,求函数y=f(x)在[0,m]上的最大值;
(Ⅱ)记函数p(x)=f(x)-g(x),若函数p(x)有零点,求m的取值范围。
题型:0127 期中题难度:| 查看答案
已知函数f(x)=ax-lnx(a为常数),
(1)当a=1时,求函数f(x)的最小值;
(2)求函数f(x)在[1,+∞)上的最值;
(3)试证明对任意的n∈N*都有ln(1+n<1。
题型:0113 期中题难度:| 查看答案
设m∈R,函数f(x)=x3-mx在x=1处取得极值,求:
(Ⅰ)m的值;
(Ⅱ)函数y=f(x)在区间上的最大值和最小值。
题型:北京期末题难度:| 查看答案
已知函数f(x)=xlnx,
(Ⅰ)求f(x)的最小值;
(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围。
题型:北京期末题难度:| 查看答案
已知球的直径为d,求其内接正四棱柱体积的最大值以及此时正四棱柱的高。
题型:0103 期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.