给一个正方体的六个面涂上四种不同颜色(红、黄、绿、兰),要求相邻两个面涂不同的颜色,则共有涂色方法(涂色后,任意翻转正方体,能使正方体各面颜色一致,我们认为是同

给一个正方体的六个面涂上四种不同颜色(红、黄、绿、兰),要求相邻两个面涂不同的颜色,则共有涂色方法(涂色后,任意翻转正方体,能使正方体各面颜色一致,我们认为是同

题型:汕头一模难度:来源:
给一个正方体的六个面涂上四种不同颜色(红、黄、绿、兰),要求相邻两个面涂不同的颜色,则共有涂色方法(涂色后,任意翻转正方体,能使正方体各面颜色一致,我们认为是同一种涂色方法(  )
A.6种B.12种C.24种D.48种
答案
由于涂色过程中,要保证满足用四种颜色,且相邻的面不同色,对于正方体的三对面来说,必然有两对同色,一对不同色,而且三对面具有“地位对等性”,因此,只需从四种颜色中选择2种涂在其中两对面上,剩下的两种颜色涂在另外两个面即可.因此共有
C24
=6种不同的涂法.
故选A.
举一反三
在象棋比赛中,参赛的任意两位选手都比赛一场,其中胜者得2分,负者得0分,平局各得1分.现有四名学生分别统计全部选手的总得分为131分,132分,133分,134分,但其中只有一名学生的统计结果是正确的,则参赛选手共有(  )
A.11位B.12位C.13位D.14位
题型:湖北模拟难度:| 查看答案
从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为(  )
A.100B.110C.120D.180
题型:湖北难度:| 查看答案
.
a1a2a3an
为一个n位正整数,其中a1,a2,…,an都是正整数,1≤a1≤9,0≤ai≤9(i=2,3,…,n).若对任意的正整数j(1≤j≤n),至少存在另一个正整数k(1≤k≤n),使得aj=ak,则称这个数为“n位重复数”.根据上述定义,“五位重复数”的个数为.______.
题型:卢湾区一模难度:| 查看答案
C2n2+C2n4+…+C2n2k+…+C2n2n的值为(  )
A.2nB.22n-1C.2n-1D.22n-1-1
题型:卢湾区一模难度:| 查看答案
“中国农谷杯”2012全国航模锦标赛于10月12日在荆门开幕,文艺表演结束后,在7所高水平的高校代表队中,选择5所高校进行航模表演.如果M、N为必选的高校,并且在航模表演过程中必须按先M后N的次序(M、N两高校的次序可以不相邻),则可选择的不同航模表演顺序有(  )
A.120种B.240种C.480种D.600种
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.