如图,在三棱锥P-ABC中,△PAB是等边三角形,D,E分别为AB,PC的中点。(1)在BC边上是否存在一点F,使得PB∥平面DEF;(2)若∠PAC=∠PBC

如图,在三棱锥P-ABC中,△PAB是等边三角形,D,E分别为AB,PC的中点。(1)在BC边上是否存在一点F,使得PB∥平面DEF;(2)若∠PAC=∠PBC

题型:0103 模拟题难度:来源:
如图,在三棱锥P-ABC中,△PAB是等边三角形,D,E分别为AB,PC的中点。
(1)在BC边上是否存在一点F,使得PB∥平面DEF;
(2)若∠PAC=∠PBC=90°,证明:AB⊥PC;
(3)在(2)的条件下,若AB=2,AC=,求三棱锥P-ABC的体积。
答案

解:(1)取BC的中点为F,则有PB∥平面DEF
∵PB∥EF
PB不在平面DEF内
∴ PB∥平面DEF;
(2)因为是等边三角形,
所以可得
如图,取中点D,连结

平面

(3)∵PD=,CD=2,PC=3

即三棱锥体积为
举一反三
已知α、β、γ是三个互不重合的平面,l是一条直线,下列命题中正确命题是[     ]
A.若α⊥β,l⊥β,则l∥α
B.若l上有两个点到α的距离相等,则l∥α
C.若l⊥α,l∥β,则α⊥β
D.若α⊥β,α⊥γ,则γ⊥β
题型:山西省模拟题难度:| 查看答案
如图,正方体ABCD-A1B1C1D1的棱长为2,O是AC与BD的交点,E为BB1的中点,
(1)求证:直线B1D∥平面AEC;
(2)求证:B1D⊥平面D1AC;
(3)求三棱锥D-D1OC的体积。
题型:模拟题难度:| 查看答案
如图,底面ABC为正三角形,EA⊥平面ABC,DC⊥平面ABC,EA=AB=2DC=2a,设F为EB的中点。
(1)求证:DF∥平面ABC;
(2)求直线AD与平面AEB所成角的正弦值。
题型:模拟题难度:| 查看答案
如图,在棱长为1的正方体ABCD-A1B1C1D1中,E是CD的中点.
(1)求证:A1C∥平面AD1E;
(2)在对角线A1C上是否存在点P,使得DP⊥平面AD1E?若存在,求出CP的长;若不存在,请说明理由.
题型:模拟题难度:| 查看答案
已知直线m、l,平面α、β,且m⊥α,lβ,给出下列命题:①若α∥β,则m⊥l; ②若α⊥β,则m∥l;③若m⊥l,则α∥β;④若m∥l,则α⊥β。其中正确命题的个数是 [     ]
A.1
B.2
C.3
D.4
题型:0105 模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.