如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=60°。(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的大小。

如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=60°。(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的大小。

题型:陕西省高考真题难度:来源:
如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=60°。
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的大小。
答案
解:(1)三棱柱为直三棱柱,
∴AB⊥AA1
在△ABC中,AB=1,,∠ABC=60°,
由正弦定理得∠ACB=30°,
∴∠BAC=90°,即AB⊥AC,
∴AB⊥平面ACC1A1
又A1C平面ACC1A1
∴AB⊥A1C。
(2)作AD⊥A1C交A1C于D点,连接BD,
由三垂线定理知BD⊥A1C,
∴∠ADB为二面角A-A1C-B的平面角
在Rt△AA1C中,
在Rt△BAD中,tan∠ADB=

即二面角A-A1C-B为
举一反三
如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°,
(Ⅰ)求证:EF⊥平面BCE;
(Ⅱ)设线段CD的中点分别为P,在直线AE上是否存在一点M,使得PM∥平面BCE?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由;
(Ⅲ)求二面角F-BD-A的大小。
题型:四川省高考真题难度:| 查看答案
如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD。
(1)求证:AB⊥DE;
(2)求三棱锥E-ABD的侧面积。
题型:福建省高考真题难度:| 查看答案
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=,点E是SD上的点,且DE=λa(0<λ≤2)。
(1)求证:对任意的λ∈(0,2),都有AC⊥BE;
(2)设二面角C-AE-D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθ·tanφ=1,求λ的值。
题型:湖北省高考真题难度:| 查看答案
在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M为AB的中点,
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的大小;
(Ⅲ)求点B到平面SMN的距离。
题型:福建省高考真题难度:| 查看答案
如图,在棱长为1的正方体ABCD-A1B1C1D1中,AC与BD交于点E,CB与CB1交于点F,
(Ⅰ)求证:A1C⊥平面BDC1
(Ⅱ)求二面角B-EF-C的大小(结果用反三角函数值表示)。
题型:湖北省高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.