如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABC折起,使∠BDC=60°.(1)证明:平面ADB⊥平面BDC;(2)设

如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABC折起,使∠BDC=60°.(1)证明:平面ADB⊥平面BDC;(2)设

题型:月考题难度:来源:
如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABC折起,使∠BDC=60°.
(1)证明:平面ADB⊥平面BDC;
(2)设E为BC的中点,求异面直线AE与DB所成角的大小.
答案

解:(1)∵折起前AD是BC边上的高,
∴当△ABD折起后,AD⊥DC,AD⊥DB,
又DB∩DC=D,∴AD⊥平面BDC,
∵AD平面ABD,
∴平面ADB⊥平面BDC;
(2)取DC中点F,连接EF,则EF∥BD,
∴∠AEF为异面直线AE与BD所成的角(或其补角),
连接AF,DE,设BD=2,则EF=1,AD=2,DC=6,DF=3,
在△BDC中,BC2=BD2+DC2﹣2BDDCcos∠BDC=28,
cos∠DBC==﹣,BE=BC=
在△BDE中,DE2=BD2+BE2﹣2BDBEcos∠DBC=13,
在Rt△ADE中,AE==5,
在Rt△ADF中,AF==
在△AEF中,cos∠AEF==
所以异面直线AE与DB所成角为60°;

举一反三
下列命题中正确的是[     ]
A.如果两条直线都平行于同一个平面,那么这两条直线互相平行
B.过一条直线有且只有一个平面与已知平面垂直
C.如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面
D.如果两条直线都垂直于同一平面,那么这两条直线共面
题型:期末题难度:| 查看答案
如图,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2。
(1)求异面直线PA与BC所成角的正切值;
(2)证明:平面PDC⊥平面ABCD;
(3)求直线PB与平面ABCD所成角的正弦值
题型:高考真题难度:| 查看答案
如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。
(1) 证明:平面BDC1⊥平面BDC;
(2)平面BDC1分此棱柱为两部分,求这两部分体积的比。
题型:高考真题难度:| 查看答案
如图,在正方体ABCD﹣A1B1C1D1中,E、F 为棱AD、AB的中点.
(Ⅰ)求证:EF∥平面CB1D1
(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.  
题型:模拟题难度:| 查看答案
如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2。
(1)求证:A1C⊥平面BCDE;
(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;
(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由。
题型:高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.