已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形(1)求证:; (2)求证:; (3)设为中点,在边上找一点,使

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形(1)求证:; (2)求证:; (3)设为中点,在边上找一点,使

题型:不详难度:来源:
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:; (2)求证:
(3)设中点,在边上找一点,使平面,并求的值.

答案
(1)根据三视图还原几何体,并能结合向量的知识建立空间直角坐标系,借助于法向量来得到证明。
(2)对于线面的垂直的证明,一般通过线线垂直的证明来得到线面垂直。
(3)
解析

试题分析:解:(1)证明:该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,
两两互相垂直。以分别为轴建立空间直角坐标系,则 ,   2分
,∴

  4分
(2)
,又
           8分
(3)设上一点,的中点,
设平面的一个法向量为,则有
,则有
,得
,…10分
//平面,于是
解得:                                  12分
平面//平面,此时
                           14分
(注:此题用几何法参照酌情给分)
点评:主要是考查了空间中的线面的平行和垂直的证明,熟练的掌握判定定理和性质定理是结题的关键,属于基础题。
举一反三
设、是两条不同的直线,是一个平面,则下列命题正确的是(  )
A.若,则B.若,则
C.若,则D.若,则

题型:不详难度:| 查看答案
在棱长为1的正方体ABCD—A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是                       (   )
A.B.C.D.

题型:不详难度:| 查看答案
正四棱锥P-ABCD的所有棱长都相等,则侧棱与底面所成的角为           .
题型:不详难度:| 查看答案
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.
题型:不详难度:| 查看答案
如图,四边形均为菱形,,且.

(1)求证:
(2)求证:
(3)求二面角的余弦值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.