正方体--,E、F分别是、的中点,p是上的动点(包括端点),过E、D、P作正方体的截面,若截面为四边形,则P的轨迹是A、线段              B、线段

正方体--,E、F分别是、的中点,p是上的动点(包括端点),过E、D、P作正方体的截面,若截面为四边形,则P的轨迹是A、线段              B、线段

题型:不详难度:来源:
正方体--,E、F分别是的中点,p是上的动点(包括端点),过E、D、P作正方体的截面,若截面为四边形,则P的轨迹是
A、线段              B、线段       
C、线段和一点      D、线段和一点C
答案
C
解析

【错解分析】学生的空间想象能力不足,不能依据平面的基本定理和线面平行定理作两平面的交线。
【正解】如图当点P在线段上移动时,易由线面平行的性质定理知:直线DE平行于平面,则过DE的截面DEP与平面的交线必平行,因此两平面的交线为过点P与DE平行的直线,由于点P在线段CF上故此时过P与DE平行的直线与直线的交点在线段上,故此时截面为四边形(实质上是平行四边形),特别的当P点恰为点F时,此时截面为也为平行四边形,当点P在线段上时如图分别延长DE、DP交于点H、G则据平面基本定理知点H、G既在平截面DEP内也在平面内,故GH为两平面的交线,连结GH分别交于点K、N(注也有可能交在两直线的延长线上),再分别连结EK、KN、PN即得截面为DEKNP此时为五边形。故选C
   
举一反三
如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是
A.PB⊥ADB.平面PAB⊥平面PBC
C.直线BC∥平面PAED.直线PD与平面ABC所成角为450

题型:不详难度:| 查看答案
如图在三棱锥S.

(1)证明
(2)求侧面与底面所成二面角的大小。
(3)求异面直线SC与AB所成角的大小
题型:不详难度:| 查看答案
在正方体中,M、N、P分别是的中点,求证:平面MNP//平面
题型:不详难度:| 查看答案
已知斜三棱柱的各棱长均为2, 侧棱与底面所成角为,且侧面底面.

(1)证明:点在平面上的射影的中点;
(2)求二面角的大小;
(3)求点到平面的距离.
题型:不详难度:| 查看答案
如图,在三棱锥中,底面,,点分别在棱上,且
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的大小;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.