已知ABCD是空间四边形形,E、F、G、H分别是AB、BC、CD、DA的中点,如果对角线AC=4,BD=2,那么EG2+HF2的值等于(  )A.10B.15C

已知ABCD是空间四边形形,E、F、G、H分别是AB、BC、CD、DA的中点,如果对角线AC=4,BD=2,那么EG2+HF2的值等于(  )A.10B.15C

题型:不详难度:来源:
已知ABCD是空间四边形形,E、F、G、H分别是AB、BC、CD、DA的中点,如果对角线AC=4,BD=2,那么EG2+HF2的值等于(  )
A.10B.15C.20D.25
答案

魔方格
如下图所示
依次连接EF、FG、GH、HE
∵E是AB中点,H是AD中点,
∴EHBD,且EH=
1
2
BD=1
同理:
FGBD,FG=
1
2
BD=1
所以,EHFG,EH=FG
同理,EFHG,EF=HG
所以,四边形EFGH为边长为1、2的平行四边形
设∠EHG=θ,那么∠HEF=180°-θ
在△EHG中,由余弦定理有:
EG2=EH2+HG2-2×EH×HG×cosθ=1+4-4cosθ=5-4cosθ
在△EFH中,由余弦定理有:
FH2=EF2+EH2-2×EF×EH×cos(180°-θ)=4+1-4cos(180°-θ)=5+4cosθ
上述两式相加,得到:
EG2+FH2=5-4cosθ+5+4cosθ=10
故选A
举一反三
如图:△ABC是边长为2的正三角形,EC⊥面ABC,BDCE,且CE=CA=2BD,M是EA的中点.
①求证:DE=DA;
②求证:DM面ABC;
③求C到面ADE的距离.魔方格
题型:不详难度:| 查看答案
在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是(  )
A.
8
3
B.
3
8
C.
4
3
D.
3
4
题型:不详难度:| 查看答案
如图所示,平面α平面β,点A∈α,C∈α,点B∈β,D∈β,点E,F分别在线段AB,CD上,AB,CD所在直线异面,且AE:EB=CF:FD
(Ⅰ)求证:EFβ;    
(Ⅱ)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.魔方格
题型:不详难度:| 查看答案
(理)已知三条线段PA,PB,PC两两垂直,底面ABC内一点Q到三个面PAB、PBC、PCA的距离分别为


2
 、 3 、 


6
,则Q点与顶点P之间的距离为______.
题型:不详难度:| 查看答案
如图,一个正四棱柱的底面棱长为2,高为


2
,其下底面位于半球的大圆上,上底面四个顶点都在半球面上,则其上底面相邻两顶点间的球面距离为(  )
A.
π
2
B.
3
C.


2
π
2
D.
2
魔方格
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.