设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于______.

设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于______.

题型:浙江难度:来源:
设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于______.
答案
由题意设直线l的方程为my=x+1,联立





my=x+1
y2=4x
得到y2-4my+4=0,△=16m2-16=16(m2-1)>0.
设A(x1,y1),B(x2,y2),Q(x0,y0).
∴y1+y2=4m,∴y0=
y1+y2
2
=2m,∴x0=my0-1=2m2-1.
∴Q(2m2-1,2m),
由抛物线C:y2=4x得焦点F(1,0).
∵|QF|=2,∴


(2m2-2)2+(2m)2
=2
,化为m2=1,解得m=±1,不满足△>0.
故满足条件的直线l不存在.
故答案为不存在.
举一反三
已知直线l过点P(-1,2)且与以A(-2,-3),B(3,0)为端点的线段相交,求直线l的斜率的取值范围.
题型:不详难度:| 查看答案
已知定点A(2,-5),动点B在直线2x-y+3=0上运动,当线段AB最短时,求B的坐标.
题型:不详难度:| 查看答案
过点A(2,-4)且倾斜角为60°的直线方程为______.
题型:不详难度:| 查看答案
已知双曲线
x2
12
-
y2
4
=1
的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是(  )
A.(-


3
3


3
3
)
B.(-


3


3
)
C.[-


3
3


3
3
]
D.[-


3


3
]
题型:不详难度:| 查看答案
已知直线ax+by+c=0中的 a,b,c 是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,那么,这样的直线的条数是______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.