已知椭圆 的离心率为,过的左焦点的直线被圆截得的弦长为.(1)求椭圆的方程;(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的

已知椭圆 的离心率为,过的左焦点的直线被圆截得的弦长为.(1)求椭圆的方程;(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的

题型:不详难度:来源:
已知椭圆 的离心率为,过的左焦点的直线被圆截得的弦长为.
(1)求椭圆的方程;
(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
答案
(1);(2)存在.
解析

试题分析:本题主要考查椭圆的标准方程及其几何性质,点到直线的距离公式、垂径定理、两圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的左焦点坐标、离心率联立得到椭圆的基本量a,b,c,从而得到椭圆的标准方程;第二问,先利用点到直线的距离公式计算出点到直线的距离,再利用垂径定理求出圆的半径,从而得到圆的具体方程,假设圆上存在点P满足条件,利用两点间距离公式列出方程,经整理得到一个新的圆,利用2个圆心的距离和半径的关系判断出2个圆相交,所以说明存在两个不同的点P.
试题解析:因为直线的方程为
,得,即                1分
 ,又∵,∴  ,
∴ 椭圆的方程为.              4分
(2)存在点P,满足
∵ 圆心到直线的距离为
又直线被圆截得的弦长为
∴由垂径定理得
故圆的方程为.           8分
设圆上存在点,满足
的坐标为

整理得,它表示圆心在,半径是的圆。
               12分
故有,即圆与圆相交,有两个公共点。
∴圆上存在两个不同点,满足.        14分
举一反三
设F1,F2分别是椭圆+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF1⊥PF2,则点P的横坐标为(  )
A.1B.C.2D.

题型:不详难度:| 查看答案
设椭圆C∶=1(a>b>0)过点(0,4),离心率为.
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.
题型:不详难度:| 查看答案
已知椭圆的离心率为.
(1)若原点到直线的距离为,求椭圆的方程;
(2)设过椭圆的右焦点且倾斜角为的直线和椭圆交于A,B两点.
,求b的值;
题型:不详难度:| 查看答案
设椭圆C:的离心率,右焦点到直线1的距离,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
题型:不详难度:| 查看答案
已知圆G:经过椭圆的右焦点F及上顶点B,过椭圆外一点(m,0)()倾斜角为的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.