已知F1,F2为椭圆x2a2+y2b2=1(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率e=32,则椭圆的方程为(  )

已知F1,F2为椭圆x2a2+y2b2=1(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率e=32,则椭圆的方程为(  )

题型:不详难度:来源:
已知F1,F2为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率e=


3
2
,则椭圆的方程为(  )
A.
x2
4
+
y2
3
=1
B.
x2
16
+
y2
3
=1
C.
x2
16
+
y2
4
=1
D.
x2
16
+
y2
12
=1
答案
由椭圆定义有4a=16,
∴a=4.
又因为椭圆的离心率e=


3
2

所以b2=4,所以椭圆的方程为
x2
16
+
y2
4
=1

故选C.
举一反三
设F1(-c,0)、F2(c,0)是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,P是以F1F2为直径的圆与椭圆的一个交点,若∠PF1F2=5∠PF2F1,则椭圆的离心率为(  )
A.


3
2
B.


6
3
C.


2
2
D.


2
3
题型:不详难度:| 查看答案
如图,椭圆中心在坐标原点,点F为左焦点,点B为短轴的上顶点,点A为长轴的右顶点.当


FB


BA
时,椭圆被称为“黄金椭圆”,则“黄金椭圆”的离心率e等于(  )
A.


5
-1
2
B.


5
+1
4
C.


3
-1
2
D.


3
+1
4

题型:不详难度:| 查看答案
椭圆
x2
9
+
y2
2
=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=______,∠F1PF2的大小为______.
题型:不详难度:| 查看答案
椭圆的长轴为A1A2,B为短轴一端点,若∠A1BA2=120°,则椭圆的离心率为(  )
A.


6
3
B.


3
3
C.


3
2
D.
1
2
题型:不详难度:| 查看答案
已知△ABC的顶点B,C在椭圆
x2
3
+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是(  )
A.2


3
B.6C.4


3
D.12
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.