已知椭圆C:=1(a>b>0)的离心率为,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且△EGF2的周长为4.(1)求椭圆C的方程;(2

已知椭圆C:=1(a>b>0)的离心率为,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且△EGF2的周长为4.(1)求椭圆C的方程;(2

题型:不详难度:来源:
已知椭圆C=1(ab>0)的离心率为,其左、右焦点分别是F1F2,过点F1的直线l交椭圆CEG两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点AB,设P为椭圆上一点,且满足t (O为坐标原点),当||<时,求实数t的取值范围.
答案
(1)y2=1.(2).
解析
(1)由题意知椭圆的离心率e,∴e2,即a2=2b2.
又△EGF2的周长为4,即4a=4,∴a2=2,b2=1.
∴椭圆C的方程为y2=1.
(2)由题意知直线AB的斜率存在,即t≠0.
设直线AB的方程为yk(x-2),A(x1y1),B(x2y2),P(xy),由
得(1+2k2)x2-8k2x+8k2-2=0.
Δ=64k4-4(2k2+1)(8k2-2)>0,得k2.
x1x2x1x2
t,∴(x1x2y1y2)=t(xy),xy[k(x1x2)-4k]=.
∵点P在椭圆C上,∴+2=2,
∴16k2t2(1+2k2).
∵||<,∴|x1x2|<
∴(1+k2)[(x1x2)2-4x1x2]<
∴(1+k2)
∴(4k2-1)(14k2+13)>0,∴k2.
k2.∵16k2t2(1+2k2),∴t2=8-
<1+2k2<2,∴<t2=8-<4,
∴-2<t<-t<2,
∴实数t的取值范围为.
举一反三
已知椭圆的右焦点为,设左顶点为A,上顶点为B且,如图.

(1)求椭圆的方程;
(2)若,过的直线交椭圆于两点,试确定的取值范围.
题型:不详难度:| 查看答案
已知的三个顶点都在抛物线上,且抛物线的焦点满足,若边上的中线所在直线的方程为为常数且).
(1)求的值;
(2)为抛物线的顶点,的面积分别记为,求证:为定值.
题型:不详难度:| 查看答案
椭圆的离心率为,且过点直线与椭圆M交于A、C两点,直线与椭圆M交于B、D两点,四边形ABCD是平行四边形
(1)求椭圆M的方程;
(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;
(3)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值
题型:不详难度:| 查看答案
椭圆的离心率为,且经过点过坐标原点的直线均不在坐标轴上,与椭圆M交于A、C两点,直线与椭圆M交于B、D两点
(1)求椭圆M的方程;
(2)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,O为坐标原点,A(-2,0),B(2,0),点P为动点,且直线AP与直线BP的斜率之积为-.
(1)求动点P的轨迹C的方程;
(2)过点D(1,0)的直线l交轨迹C于不同的两点MN,△MON的面积是否存在最大值?若存在,求出△MON的面积的最大值及相应的直线方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.