已知, 是椭圆的两个焦点,若满足的点M总在椭圆的内部,则椭圆离心率的取值范围是(    )A.(0, 1)B.C.D.

已知, 是椭圆的两个焦点,若满足的点M总在椭圆的内部,则椭圆离心率的取值范围是(    )A.(0, 1)B.C.D.

题型:不详难度:来源:
已知, 是椭圆的两个焦点,若满足的点M总在椭圆的内部,则椭圆离心率的取值范围是(    )
A.(0, 1)B.C.D.

答案
B
解析

试题分析:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,
因为,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.
又M点总在椭圆内部,
∴该圆内含于椭圆,即c<b,c2<b2=a2-c2
∴e2=,∴0<e<,故选C.
点评:典型题,本题突出考查椭圆的几何性质,圆的定义,有较浓的“几何味”。
举一反三
(本题12分)直线l:y=kx+1与双曲线C:的右支交于不同的两点A,B
(Ⅰ)求实数k的取值范围;
(Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.
题型:不详难度:| 查看答案
设双曲线的离心率为e=,右焦点为F(c,0),方程ax2-bx-c=0的两个实根分别为x1和x2,则点P(x1,x2
A.在圆x2+y2=8外B.在圆x2+y2=8上
C.在圆x2+y2=8内 D.不在圆x2+y2=8内

题型:不详难度:| 查看答案
(本题满分12分)
已知中心在原点O,焦点在x轴上的椭圆E过点(1,),离心率为
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线xy+1=0与椭圆E相交于A、B(BA上方)两点,问是否存在直线l,使l与椭圆相交于C、D(CD上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知抛物线,焦点为,准线为为抛物线上一点,为垂足,如果直线的斜率为,那么        。
题型:不详难度:| 查看答案
已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为为双曲线上一点(不同于),直线分别与直线交于两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.