设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且(1)求椭圆C的离心率;(2)若过A、Q、F三点的圆恰好

设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且(1)求椭圆C的离心率;(2)若过A、Q、F三点的圆恰好

题型:不详难度:来源:
设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且
(1)求椭圆C的离心率;
(2)若过A、Q、F三点的圆恰好与直线l相切,求椭圆C的方程.
答案
(1)
(2)
解析

⑴设Q(x0,0),由F(-c,0)
A(0,b)知
…2分
,得………4分
因为点P在椭圆上,所以………6分
整理得2b2=3ac,即2(a2-c2)=3ac,,故椭圆的离心率e=………8分
⑵由⑴知
于是F(-a,0), Q
△AQF的外接圆圆心为(a,0),半径r=|FQ|=a…………10分
所以,解得a=2,∴c=1,b=
所求椭圆方程为
举一反三
在平面直角坐标系中,过定点作直线与抛物线)相交于两点.
(I)若点是点关于坐标原点的对称点,求面积的最小值;
(II)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为2+2.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W有两个不同的交点PQ
k的取值范围;
(Ⅲ)已知点M,0),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量共线?如果存在,求出k的值;如果不存在,请说明理由.
题型:不详难度:| 查看答案
(本小题满分12分)过点M(1,1)作直线与抛物线交于A、B两点,该抛物线在A、B两点处的两条切线交于点P。  (I)求点P的轨迹方程;  (II)求△ABP的面积的最小值。
题型:不详难度:| 查看答案
已知椭圆:上的两点A(0,)和点B,若以AB为边作正△ABC,当B变动时,计算△ABC的最大面积及其条件.

题型:不详难度:| 查看答案
设椭圆方程为,过原点且倾斜角为的两条直线分别交椭圆于A、C和B、D两点.(1)用表示四边形ABCD的面积S;(2)当时,求S的最大值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.