若方程x2-my2+2x+2y=0表示两条直线,则m的取值是______.

若方程x2-my2+2x+2y=0表示两条直线,则m的取值是______.

题型:不详难度:来源:
若方程x2-my2+2x+2y=0表示两条直线,则m的取值是______.
答案
方程x2-my2+2x+2y=0表示两条直线,则(x+1)2-m(y-
1
m
2+
1
m
-1=0,所以M=1,可得(x-y+2)(x+y)=0,表示两条直线,
故答案为:1
举一反三
在平面直角坐标系中,已知A1(-


2
,0),A2(


2
,0),P(x,y),M(x,1),N(x,-2)
,若实数λ使得λ2


OM


ON
=


A1P


A2P
(O为坐标原点)
(1)求P点的轨迹方程,并讨论P点的轨迹类型;
(2)当λ=


2
2
时,若过点B(0,2)的直线l与(1)中P点的轨迹交于不同的两点E,F(E在B,F之间),试求△OBE与OBF面积之比的取值范围.
题型:不详难度:| 查看答案
已知⊙O的方程是x2+y2-2=0,⊙O"的方程是x2+y2-8x+10=0,由动点P向⊙O和⊙O"所引的切线长相等,则动点P的轨迹方程是______.
题型:四川难度:| 查看答案
点A(-2,0),B(3,0),动点P(x,y)满足


PA


PB
=x2
,则点P的轨迹方程为 ______.
题型:不详难度:| 查看答案
直角坐标系下,O为坐标原点,定点E(8,0),动点M(x,y)满足


MO


ME
=x2
(1)求动点M(x,y)的轨迹C的方程;
(2)过定点F(2,0)作互相垂直的直线l1,l2分别交轨迹C于点M,N和点R,Q,求四边形MRNQ面积的最小值;
(3)定点P(2,4),动点A,B是轨迹C上的三个点,且满足KPA•KPB=8试问AB所在的直线是否过定点,若是,求出该定点的坐标;否则说明理由.
题型:不详难度:| 查看答案
已知直线l1:x-y=0,l2:x+y=0,点P是线性约束条件





x-y≥0
x+y≥0
所表示区域内一动点,PM⊥l1,PN⊥l2,垂足分别为M、N,且S△OMN=
1
2
(O为坐标原点).
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)是否存在过点(2,0)的直线l与(Ⅰ)中轨迹交于点A、B,线段AB的垂直平分线交y轴于Q点,且使得△ABQ是等边三角形.若存在,求出直线l的方程,若不存在,说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.