写出下列命题的“若p,则q”形式,并写出它的逆命题、否命题与逆否命题,并判断它们的真假.(1)全等三角形的对应边相等;(2)四条边相等的四边形是正方形.

写出下列命题的“若p,则q”形式,并写出它的逆命题、否命题与逆否命题,并判断它们的真假.(1)全等三角形的对应边相等;(2)四条边相等的四边形是正方形.

题型:不详难度:来源:
写出下列命题的“若p,则q”形式,并写出它的逆命题、否命题与逆否命题,并判断它们的真假.
(1)全等三角形的对应边相等;
(2)四条边相等的四边形是正方形.
答案
(1)“若p,则q”的形式:若两个三角形全等,则这两个三角形的对应边相等;是真命题.
逆命题:若两个三角形的对应边相等,则这两个三角形全等;是真命题.
否命题:若两个三角形不全等,则这两个三角形的对应边不全相等;是真命题.
逆否命题:若两个三角形的对应边不全相等,则这两个三角形不全等;是真命题.
(2)“若p,则q”的形式:若一个四边形的四条边相等,则它是正方形;是假命题.
逆命题:若一个四边形是正方形,则它的四条边相等;是真命题.
否命题:若一个四边形的四条边不全相等,则它不是正方形;是真命题.
逆否命题:若一个四边形不是正方形,则它的四条边不全相等;是假命题.
举一反三
现有四个函数:
①y=x•sinx;
②y=x•cosx;
③y=x•|cosx|;
④y=x•2x
其中奇函数的个数为(  )
A.1B.2C.3D.4
题型:不详难度:| 查看答案
下列四个命题:
①∀x∈R,x2+x+1≥0;
②∀x∈Q,
1
2
x2+x-
1
3
是有理数.
③∃α,β∈R,使sin(α+β)=sinα+sinβ;
④∃x,y∈Z,使3x-2y=10所有真命题的序号是______.
题型:不详难度:| 查看答案
已知下列命题:
①已知p、q为两个命题,若“p∨q”为假命题,则“¬p∧¬q”为真命题;
②若函数y=f(x+1)为偶函数,则y=f(x)的图象关于x=1对称;
③函数y=f(x)的图象与直线x=a至多有一个交点;
④命题“若x≠y,则sinx≠siny”的逆否命题为真命题.
其中正确的命题序号是______.
题型:不详难度:| 查看答案
下列说法:
①“∃x∈R,2x>3”的否定是“∀x∈R,2x≤3”;
②命题“函数y=sin(ϖx+
π
3
)
的最小正周期是π,则ϖ=2”是真命题;
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是假命题;
④f(x)是(-∞,0)∪(0,+∞)上的偶函数,x>0时f(x)的解析式是f(x)=x3
则x<0时f(x)的解析式是f(x)=-x3
其中正确的说法是(  )
A.①③④B.①②③C.①②④D.②③④
题型:不详难度:| 查看答案
若函数f(x)满足:对于任意x1>0,x2>0都有f(x1)>0,f(x2)>0,且f(x1)+f(x2)<f(x1+x2)成立,则称函数f(x)为“守法函数”.给出下列四个函数:①y=


x
;②y=log2(x+1);③y=2x-1;④y=cosx;其中“守法函数”的所有函数的序号是______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.