①若f(x)=,则对于任意x1>0,x2>0都有f(x1)>0,f(x2)>0,f(x1)+f(x2)=+,f(x1+x2)=,(+)2=x1+x2+2>x1+x2,所以f(x1)+f(x2)>f(x1+x2),所以①不是“守法函数”. ②若f(x)=log2(x+1),对于任意x1>0,x2>0都有f(x1)>0,f(x2)>0,设x1=x2=1,则f(x1)+f(x2)=1+1=2,而f(x1+x2)=log23<2,所以f(x1)+f(x2)<f(x1+x2)不成立,所以②不是“守法函数”. ③若f(x)=2x-1,对于任意x1>0,x2>0都有f(x1)>0,f(x2)>0,f(x1)+f(x2)-f(x1+x2)=2x1-1+2x2-1-2x1+x2+1<0,则③是“守法函数”.④若f(x)=cosx,因为f(x)=cosx∈[-1,1],所以任意x1>0,x2>0,f(x1)>0,f(x2)>0不一定成立,所以④不是“守法函数”. 故答案为:③. |