给出定义:若m-12<x≤m+12(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x-{x}的四个命

给出定义:若m-12<x≤m+12(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x-{x}的四个命

题型:黄冈模拟难度:来源:
给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=x-{x}的四个命题:
①y=f(x)的定义域是R,值域是(-
1
2
1
2
];
②点(k,0)(k∈Z)是y=f(x)的图象的对称中心;
③函数y=f(x)的最小正周期为1;
④函数y=f(x)在(-
1
2
3
2
]上是增函数;
则其中真命题是______.
答案
①中,令x=m+a,a∈(-
1
2
1
2
]
∴f(x)=x-{x}=a∈(-
1
2
1
2
]
所以①正确;
②中∵f(2k-x)=(2k-x)-{2k-x}=(-x)-{-x}=f(-x)
∴点(k,0)(k∈Z)是y=f(x)的图象的对称中心;故②错;
③中,∵f(x+1)=(x+1)-{x+1}=x-{x}=f(x)
所以周期为1,故③正确;
④中,x=-
1
2
时,m=-1,
f(-
1
2
)=
1
2

x=
1
2
时,m=0,
f(
1
2
)=
1
2

所以f(-
1
2
)=f(
1
2

所以④错误.
故答案为:①③.
举一反三
在直角坐标系xOy中,设P为两动圆(x+2)2+y2=(r+2)2,(x-2)2+y2=r2(r>1)的一个交点,记动点P的轨迹为C.给出下列三个结论:
①曲线C过坐标原点;
②曲线C关于x轴对称;
③设点P(x,y),则有|y|<|2x|.
其中,所有正确的结论序号是______.
题型:不详难度:| 查看答案
定义在R上的偶函数f(x)在区间[1,2]上是增函数.且满足f(x+1)=f(1-x),关于函数f(x)有如下结论:
f(
3
2
)=f(-
1
2
)
; 
②图象关于直线x=1对称; 
③在区间[0,1]上是减函数;
④在区间[2,3]上是增函数;
其中正确结论的序号是______.
题型:不详难度:| 查看答案
给出下列四个命题
(1)“k=1”是“函数y=cos2kx-sin2kx的最小正周期为π”的充要条件;
(2)“a=3”是“直线ax+2y+3a=0与直线3x+(a-1)y=a-7互相平行”的充要条件;
(3)函数y=
x2+4


x2+3
的最小值为2;
(4)双曲线
x2
9
-y2=1
的两条渐近线是y=±
x
3

其中是假命题为______(将你认为是假命题的序号都填上)
题型:不详难度:| 查看答案
下列说法不正确的是(  )
A.不可能事件的概率是0,必然事件的概率是1
B.互斥事件不一定是对立事件,对立事件一定是互斥事件
C.事件“直线y=k(x+1)过点(-1,0)”是必然事件
D.先后抛掷两枚大小一样的硬币,两枚都出现反面的概率是
1
3
题型:不详难度:| 查看答案
已知p:函数y=x2+mx+1在(-1,+∞)上单调递增,q:函数y=4x2+4(m-2)x+1大于0恒成立.若p∨q为真,p∧q为假,求m的取值范围.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.