如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点,.(1)求证:;(2)求二面角的余弦值.

如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点,.(1)求证:;(2)求二面角的余弦值.

题型:不详难度:来源:
如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点

(1)求证:
(2)求二面角的余弦值.
答案
(1)详见解析;(2)
解析

试题分析:(1)要证,需先证平面,由于平面易证,故有,又因为,则证得平面;(2)综合法是先找到二面角的一个平面角,不过必须根据平面角的定义证明,然后在中解出的三角函数值.
试题解析:(1)连接,由知,点的中点,
又∵为圆的直径,∴
知,
为等边三角形,从而. 3分
∵点在圆所在平面上的正投影为点
平面,又平面
,       5分
得,平面
平面
.            6分

(2)(综合法)过点,垂足为,连接.         7分
由(1)知平面,又平面
,又
平面,又平面,∴,      9分
为二面角的平面角.         10分
由(Ⅰ)可知
,则
∴在中,
,即二面角的余弦值为.     14分
举一反三
如图,为圆柱的母线,是底面圆的直径,分别是的中点,

(1)证明:
(2)证明:
(3)求四棱锥与圆柱的体积比.
题型:不详难度:| 查看答案
如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,分别是线段的中点. 

(1)求证:平面平面;
(2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.

(1)求证:四边形为平行四边形;
(2)试在直线AC上找一点F,使得.
题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,,平面底面中点,M是棱PC上的点,

(1)若点M是棱PC的中点,求证:平面
(2)求证:平面底面
(3)若二面角M-BQ-C为,设PM=tMC,试确定t的值.
题型:不详难度:| 查看答案
在四棱锥中,底面为直角梯形,的中点.

(1)求证:平面
(2)求证:.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.