在Rt△PAB中,PA=AB=2,∴PB=2, ∵AE⊥PB,∴AE=PB=,∴PE=BE=. ∵PA⊥底面ABC,得PA⊥BC,AC⊥BC,PA∩AC=A ∴BC⊥平面PAC,可得AF⊥BC ∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC ∵PB⊂平面PBC,∴AF⊥PB ∵AE⊥PB且AE∩AF=A,∴PB⊥面AEF, 结合EF⊂平面AEF,可得PB⊥EF. Rt△PEF中,∠EPF=θ,可得EF=PE•tanθ=tanθ, ∵AF⊥平面PBC,EF⊂平面PBC.∴AF⊥EF. ∴Rt△AEF中,AF==, ∴S△AEF=AF•EF=×tanθ×= ∴当tan2θ=,即tanθ=时,S△AEF有最大值为 故选:D |