设函数在区间上的导函数为,在区间上的导函数为,若在区间上恒成立,则称函数在区间上的“凸函数”。已知,若对任意的实数满足时,函数在区间上为“凸函数”,则的最大值为

设函数在区间上的导函数为,在区间上的导函数为,若在区间上恒成立,则称函数在区间上的“凸函数”。已知,若对任意的实数满足时,函数在区间上为“凸函数”,则的最大值为

题型:不详难度:来源:
设函数在区间上的导函数为在区间上的导函数为,若在区间恒成立,则称函数在区间上的“凸函数”。已知,若对任意的实数满足时,函数在区间上为“凸函数”,则的最大值为
A.4           B.3            C. 2           D.1
答案
C
解析

试题分析:当|m|≤2时,f″(x)=x2-mx-3<0恒成立等价于当|m|≤2时,mx>x2-3恒成立.
当x=0时,f″(x)=-3<0显然成立.
当x>0时,x-<m
∵m的最小值是-2,∴x-<-2,从而解得0<x<1;
当x<0时,x->m
∵m的最大值是2,∴x->2,从而解得-1<x<0.
综上可得-1<x<1,从而(b-a)max=1-(-1)=2,故选C.
点评:中档题,本题涉及函数的导数计算及不等式恒成立问题,关键是要理解题目所给信息(新定义),对考生知识迁移与转化能力有较好的考查。
举一反三
建造一断面为等腰梯形的防洪堤(如图),梯形的腰与底边所角为60°,考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为m2,为了使堤的上面与两侧面的水泥用料最省,要求断面的外周长(梯形的上底BC与两腰长的和)最小.如何设计防洪堤,才能使水泥用料最省.
 
题型:不详难度:| 查看答案
是定义在上的函数,当,且时,有
(1)证明是奇函数;
(2)当时,(a为实数). 则当时,求的解析式;
(3)在(2)的条件下,当时,试判断上的单调性,并证明你的结论.
题型:不详难度:| 查看答案
已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.
题型:不详难度:| 查看答案
已知函数
(1)若函数处的切线方程为,求实数的值;
(2)若在其定义域内单调递增,求的取值范围.
题型:不详难度:| 查看答案
据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).

(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.