求证:2是无理数.

求证:2是无理数.

题型:不详难度:来源:
求证:


2
是无理数.
答案
证明:假设


2
是有理数,不妨设


2
=
q
p
(p,q是互质的正整数).


2
p=q
?q2=2p2,故2必是q的因数.
于是可设q=2m(m为正整数),则2p2=4m2,即p2=2m2,故2又是p的因数.
因此p,q有公因数2,这与p,q是互质的正整数相矛盾.
这说明假设


2
是有理数不成立,故


2
是无理数.
举一反三
用反证法证明:“若a,b两数之积为0,则a,b至少有一个为0”,应假设(  )
A.a,b没有一个为0B.a,b只有一个为0
C.a,b至多有一个为0D.a,b两个都为0
题型:不详难度:| 查看答案
已知a、b、c、d∈R,且a+b=c+d=1,ac+bd>1.
求证:a、b、c、d中至少有一个是负数.
题型:不详难度:| 查看答案
用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0有有理根,那么a,b,c存在偶数”时,否定结论应为(  )
A.a,b,c都是偶数
B.a,b,c都不是偶数
C.a,b,c中至多一个是偶数
D.a,b,c中至多有两个是偶数
题型:不详难度:| 查看答案
用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:
①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;
②所以一个三 角形中不能有两个直角;
③假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°,
正确顺序的序号为(  )
A.①②③B.①③②C.②③①D.③①②
题型:不详难度:| 查看答案
用反证法证明:“a>b”,应假设为______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.