用反证法证明:a,b至少有一个为0,应假设( )A.a,b没有一个为0B.a,b只有一个为0C.a,b至多有一个为0D.a,b两个都为0
题型:不详难度:来源:
用反证法证明:a,b至少有一个为0,应假设( )A.a,b没有一个为0 | B.a,b只有一个为0 | C.a,b至多有一个为0 | D.a,b两个都为0 |
|
答案
由于命题:“a、b至少有一个为0”的反面是:“a、b没有一个为0”, 故用反证法证明:“a、b至少有一个为0”,应假设“a、b没有一个为0”, 故选A. |
举一反三
用反证法证明:“若a,b两数之积为0,则a,b至少有一个为0”,应假设( )A.a,b没有一个为0 | B.a,b只有一个为0 | C.a,b至多有一个为0 | D.a,b两个都为0 |
|
已知a、b、c、d∈R,且a+b=c+d=1,ac+bd>1. 求证:a、b、c、d中至少有一个是负数. |
用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0有有理根,那么a,b,c存在偶数”时,否定结论应为( )A.a,b,c都是偶数 | B.a,b,c都不是偶数 | C.a,b,c中至多一个是偶数 | D.a,b,c中至多有两个是偶数 |
|
用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤: ①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立; ②所以一个三 角形中不能有两个直角; ③假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°, 正确顺序的序号为( ) |
最新试题
热门考点