用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是(  )A.a2=b2B.a2<b2C.a2≤b2D.a2<b2,且a2=b2

用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是(  )A.a2=b2B.a2<b2C.a2≤b2D.a2<b2,且a2=b2

题型:不详难度:来源:
用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是(  )
A.a2=b2B.a2<b2
C.a2≤b2D.a2<b2,且a2=b2
答案
由于结论a2>b2 的否定为:a2≤b2
用反证法证明命题时,要首先假设结论的否定成立,
故应假设a2≤b2 ,由此推出矛盾.
故选C.
举一反三
用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方程存在实数根x0为(  )
A.整数B.奇数或偶数
C.正整数或负整数D.自然数或负整数
题型:不详难度:| 查看答案
用反证法证明:a,b至少有一个为0,应假设(  )
A.a,b没有一个为0B.a,b只有一个为0
C.a,b至多有一个为0D.a,b两个都为0
题型:不详难度:| 查看答案
求证:


2
是无理数.
题型:不详难度:| 查看答案
用反证法证明:“若a,b两数之积为0,则a,b至少有一个为0”,应假设(  )
A.a,b没有一个为0B.a,b只有一个为0
C.a,b至多有一个为0D.a,b两个都为0
题型:不详难度:| 查看答案
已知a、b、c、d∈R,且a+b=c+d=1,ac+bd>1.
求证:a、b、c、d中至少有一个是负数.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.