(本题满分10分)在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*).求a2,a3

(本题满分10分)在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*).求a2,a3

题型:不详难度:来源:
(本题满分10分)在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*).求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公式,并证明你的结论.
答案
a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.证明见解析.
猜测an=n(n+1),bn=(n+1)2,n∈N*.     
解析
主要考查了数列的通项公式和数学归纳法的运用。
由条件得2bn=an+an+1=bnbn+1
由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.
猜测an=n(n+1),bn=(n+1)2,n∈N*.
用数学归纳法证明:
①当n=1时,由已知a1=2,b1=4可得结论成立.
②假设当n=k(k≥2且k∈N*)时,结论成立,即
ak=k(k+1),bk=(k+1)2
那么当n=k+1时,
ak+1=2bk-ak=2(k+1)2-k(k+1)=(k+1)(k+2),
bk+1=(k+2)2.
解:由条件得2bn=an+an+1=bnbn+1
由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25.
猜测an=n(n+1),bn=(n+1)2,n∈N*.                     4分
用数学归纳法证明:
①当n=1时,由已知a1=2,b1=4可得结论成立.
②假设当n=k(k≥2且k∈N*)时,结论成立,即
ak=k(k+1),bk=(k+1)2
那么当n=k+1时,
ak+1=2bk-ak=2(k+1)2-k(k+1)=(k+1)(k+2),
bk+1=(k+2)2.
所以当n=k+1时,结论也成立.
由①②可知,an=n(n+1),bn=(n+1)2对一切n∈N*都成立.     10分
举一反三
(本题满分15分)本题理科做.
)。
(1)求出的值;
(2)求证:数列的各项均为奇数.
题型:不详难度:| 查看答案
用数学归纳法证明等式时,当时左边表达式是       ;从需增添的项的是                 .
题型:不详难度:| 查看答案
如图,在圆内画条线段,将圆分割成两部分;画条相交线段,彼此分割成条线段,将圆分割成部分;画条线段,彼此最多分割成条线段,将圆最多分割成部分;画条线段,彼此最多分割成条线段,将圆最多分割成部分.
       
(1)猜想:圆内两两相交的条线段,彼此最多分割成多少条线段?
(2)记在圆内画条线段,将圆最多分割成部分,归纳出的关系.
(3)猜想数列的通项公式,根据的关系及数列的知识,证明你的猜想是否成立.
题型:不详难度:| 查看答案
利用数学归纳法证明   时,从“”变到“”时,左边应增乘的因式是
A.B.C.D.

题型:不详难度:| 查看答案
用数学归纳法证明: 
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.