如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3). (1)求经过A、B、C三点的抛物线的解析式; (2)过C点作CD平行于x轴交抛物线于点D,写出D点

如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3). (1)求经过A、B、C三点的抛物线的解析式; (2)过C点作CD平行于x轴交抛物线于点D,写出D点

题目
如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).
(1)求经过A、B、C三点的抛物线的解析式;
(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;
(3)若抛物线的顶点为P,连接PC、PD,判断四边形CEDP的形状,并说明理由.
答案
(1)由于抛物线经过点C(0,3),
可设抛物线的解析式为y=ax2+bx+3(a≠0),
4a−2b+3=0
36a+6b+3=0

解得
a=−
1
4
b=1

∴抛物线的解析式为y=−
1
4
x2+x+3
.(4分)
(2)∵D=C=3,
∴D=4
即可得D的坐标为D(4,3),(5分)
直线AD的解析式为y=
1
2
x+1

直线BC的解析式为y=−
1
2
x+3

y=
1
2
x+1
y=−
1
2
x+3
求得交点E的坐标为(2,2).(8分)
(3)连接PE交CD于F,
P的坐标为(2,4),
又∵E(2,2),C(0,3),D(4,3),
∴PF=EF=1,CF=FD=2,且CD⊥PE,
∴四边形CEDP是菱形.(12分)
(1)由A、B、C三点的坐标适合抛物线的解析式,从而用待定系数法求出抛物线的解析式;
(2)联立直线AD、BC的解析式,求出交点E的坐标;
(3)四边形CEDP为菱形,可根据P、C、E、D四点的坐标,证四边形CEDP的对角线互相垂直平分.

二次函数综合题.

此题考查了二次函数解析式的确定、函数图象交点坐标的求法以及菱形的判定方法,难度不大,细心求解即可.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.