在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h

在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h

题型:不详难度:来源:
在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:
(1)写出A、B两地之间的距离;
(2)求出点M的坐标,并解释该点坐标所表示的实际意义;
(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.

答案
(1)30千米  (2)20千米  (3)≤x≤≤x≤2
解析
解:(1)x=0时,甲距离B地30千米,
所以,A、B两地的距离为30千米;
(2)由图可知,甲的速度:30÷2=15千米/时,
乙的速度:30÷1=30千米/时,
30÷(15+30)=
×30=20千米,
所以,点M的坐标为(,20),表示甲、乙两人出发小时后相遇,此时距离B地20千米;
(3)设x小时甲、乙两人相距3km,
①若是相遇前,则15x+30x=30﹣3,
解得x=
②若是相遇后,则15x+30x=30+3,
解得x=
③若是甲到达B地前,而乙到达A地后按原路返回时,
则15x﹣30(x﹣1)=3,
解得x=
所以,当≤x≤≤x≤2时,甲、乙两人能够用无线对讲机保持联系.
(1)x=0时甲的y值即为A、B两地的距离;
(2)点M表示中途相遇时的情况,根据图象求出甲、乙两人的速度,进而求出相遇时间,然后求出乙的路程即可得到点M的坐标以及实际意义;
(3)分相遇前、相遇后和乙到达A地后按原路返回时三种情况求出x的值,然后写出取值范围即可.
举一反三
在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是(  )
A.B.
C.D.

题型:不详难度:| 查看答案
在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:
若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.
例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).
(1)已知点A(﹣,0),B为y轴上的一个动点,
①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;
②直接写出点A与点B的“非常距离”的最小值;
(2)已知C是直线y=x+3上的一个动点,
①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;
②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.

题型:不详难度:| 查看答案
如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为 (2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是      

题型:不详难度:| 查看答案
一辆汽车和一辆摩托车分别从两地去同一城市,它们离地的路程随时间变化的图像如图所示,则下列结论错误的是(         )
A.摩托车比汽车晚到
B.两地的路程为
C.摩托车的速度为
D.汽车的速度为

题型:不详难度:| 查看答案
如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为 ,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是(  )
A.3B.4C.5D.6

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.