如图1,在等腰△ABC中,底边BC=8,高AD=2,一动点Q从B点出发,以每秒1个单位的速度沿BC向右运动,到达D点停止;另一动点P从距离B点1个单位的位置出发

如图1,在等腰△ABC中,底边BC=8,高AD=2,一动点Q从B点出发,以每秒1个单位的速度沿BC向右运动,到达D点停止;另一动点P从距离B点1个单位的位置出发

题型:不详难度:来源:
如图1,在等腰△ABC中,底边BC=8,高AD=2,一动点Q从B点出发,以每秒1个单位的速度沿BC向右运动,到达D点停止;另一动点P从距离B点1个单位的位置出发,以相同的速度沿BC向右运动,到达DC中点停止;已知P、Q同时出发,以PQ为边作正方形PQMN,使正方形PQMN和△ABC在BC的同侧,设运动的时间为t秒(t≥0).
(1)当点N落在AB边上时,t的值为   ,当点N落在AC边上时,t的值为   
(2)设正方形PQMN与△ABC重叠部分面积为S,求出当重叠部分为五边形时S与t的函数关系式以及t的取值范围;
(3)(本小题选做题,做对得5分,但全卷不超过150分)
如图2,分别取AB、AC的中点E、F,连接ED、FD,当点P、Q开始运动时,点G从BE中点出发,以每秒 个单位的速度沿折线BE-ED-DF向F点运动,到达F点停止运动.请问在点P的整个运动过程中,点G可能与PN边的中点重合吗?如果可能,请直接写出t的值或取值范围;若不可能,请说明理由.

答案
(1)1   
(2)  
(3)可能.t=0或t=2或4≤t≤5
解析

试题分析:本题属于学科综合题,代数知识与几何知识有机结合在一起,体现了数形结合的思想,解答此类综合题关键是数与形的灵活转化.(1)当点N落在AB边上时,NP=1,NP∥AD,利用平行线对应线段成比例的性质可算出t的值;当N落在AC边上时,正方形的边长不再是1,Q点已经停在D点,PD=t-3,∴PN="t-3," PC=4-(t-3)=7-t ∵PN∥DA ∴ ∴ ∴t=.(2)画出运动中的图形,根据具体图形利用未知数t的代数式表示并求其面积.(3)重点是准确画出图形变化,PN中点与G何时重合.
试题解析: (1)解:∵NP∥AD    PN=1  AD="2" ∴ ∴PN是△ABD的中位线 ∴BP=2∴t=1
∵PD="t-3," ∴PN="t-3," PC=4-(t-3)=7-t 
∵PN∥DA ∴ ∴t=
( 2 )当  0<t<1,重叠部分为梯形,当1<t<2时,设EQ交AB于R,则重叠部分为五边形PQREN.

(2)当1<t<2时, 设EQ交AB于R,则重叠部分为五边形PQREN.
∵ME=2-t,MR= ME=(2-t)∴SMRE  ME·MR=(2-t)2
∴S=S正方形PQMNSMRE =1-(2-t)2=-t2+t 

<t<5时
设MN交AC于S,PN交AC于T,则重叠部分为五边形PQMST
∵AM=2-(t-3)=5-t,MS=2AM=2(5-t) PC=7-t,PT= PC=(7-t)
∴SAMS  AM·MS=(5-t)2,SPTC  PC·PT=(7-t)2
又SADC  AD·CD=×2×4=4
∴S=SADCSAMS SPTC =4-(5-t)2(7-t)2=-t2t-
综上所述,当重叠部分为五边形时S与t的函数关系式为:

(3)可能. t=0或t=2或4≤t≤5
当t=0时,QP=1,GP=,G为BE中点,也为NP中点.

当t=2时,G点所走路程为×2=到达DE中点.正方形 PQEN运动到图形位置,EQ=1,GP= NP为NP中点.

当4≤t≤5时,DP=t-3 设NP与DF相交与点R则PR=(t-3) 由勾股定理得DR= (t-3) 此时DG=t-= (t-3) 所以点R与点G重合.

举一反三
已知关于x的二次函数y=x2-2x+c的图像上有两点A(x1,y1),B(x2,y2),若x1<1<x2且x1+x2=2,则y1与y2的大小关系是
A.y1<y2B.y1>y2C.y1=y2D.不能确定

题型:不详难度:| 查看答案
如图①,已知二次函数的解析式是y=ax2+bx(a>0),顶点为A(1,-1).
(1)a=   
(2)若点P在对称轴右侧的二次函数图像上运动,连结OP,交对称轴于点B,点B关于顶点A的对称点为C,连接PC、OC,求证:∠PCB=∠OCB;
(3)如图②,将抛物线沿直线y=-x作n次平移(n为正整数,n≤12),顶点分别为A1,A2,…,An,横坐标依次为1,2,…,n,各抛物线的对称轴与x轴的交点分别为D1,D2,…,Dn,以线段AnDn为边向右作正方形AnDnEnFn,是否存在点Fn恰好落在其中的一个抛物线上,若存在,求出所有满足条件的正方形边长;若不存在,请说明理由.

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.

题型:不详难度:| 查看答案
如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(),则s()与t(s)的函数关系可用图像表示为(   )

题型:不详难度:| 查看答案
二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…An在y轴的正半轴上,点B1,B2,B3…Bn在二次函数位于第一象限的图象上,点C1,C2,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An1BnAn
=60°,菱形An﹣1BnAnCn的周长为     

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.